|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
b3850737 |
005 |
20220707095018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211204s2022 enk o 000 0 eng d |
020 |
|
|
|a 9781785615795
|q (electronic book)
|
020 |
|
|
|a 1785615793
|q (electronic book)
|
020 |
|
|
|z 9781785615788
|
020 |
|
|
|z 1785615785
|
035 |
|
|
|a (OCoLC)1287130751
|
035 |
|
|
|a (OCoLC)ebc6811597
|
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d N$T
|d OCLCO
|d UKAHL
|d YDX
|d OCLCF
|d UIU
|d OCLCO
|d OCLCQ
|d NhCcYME
|d UtOrBLW
|
050 |
|
4 |
|a QA76.9.V5
|b L34 2022
|
082 |
0 |
4 |
|a 006.8
|2 23
|
100 |
1 |
|
|a Lafruit, Gauthier.
|0 http://id.loc.gov/authorities/names/no2022056539
|
245 |
1 |
0 |
|a Virtual Reality and Light Field Immersive Video Technologies for Real-World Applications.
|
264 |
|
1 |
|a London, United Kingdom :
|b Institution of Engineering & Technology,
|c 2022.
|
300 |
|
|
|a 1 online resource ( 428 pages) :.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Computing and Networks
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Immersive video introduction --
|t References --
|g 2.
|t Virtual reality --
|g 2.1.
|t Introduction/history --
|g 2.2.
|t challenge of three to six degrees of freedom --
|g 2.3.
|t challenge of stereoscopic to holographic vision --
|t References --
|g 3.
|t 3D gaming and VR --
|g 3.1.
|t OpenGLinVR --
|g 3.2.
|t 3D data representations --
|g 3.2.1.
|t Triangular meshes --
|g 3.2.2.
|t Subdivision surfaces and Bezier curves --
|g 3.2.3.
|t Textures and cubemaps --
|g 3.3.
|t OpenGL pipeline --
|t References --
|g 4.
|t Camera and projection models --
|g 4.1.
|t Mathematical preliminaries --
|g 4.2.
|t pinhole camera model --
|g 4.3.
|t Intrinsics of the pinhole camera --
|g 4.4.
|t Projection matrices --
|g 4.4.1.
|t Mathematical derivation of projection matrices --
|g 4.4.2.
|t Characteristics of the projection matrices --
|t References --
|g 5.
|t Light equations --
|g 5.1.
|t Light contributions --
|g 5.1.1.
|t Emissive light source --
|g 5.1.2.
|t Ambient light --
|g 5.1.3.
|t Diffuse light --
|g 5.1.4.
|t Specular light --
|g 5.2.
|t Physically correct light models --
|g 5.3.
|t Light models for transparent materials --
|g 5.4.
|t Shadows rendering --
|g 5.5.
|t Mesh-based 3D rendering with light equations --
|g 5.5.1.
|t Gouraud shading --
|g 5.5.2.
|t Phong shading --
|g 5.5.3.
|t Bump mapping --
|g 5.5.4.
|t 3D file formats --
|t References --
|g 6.
|t Kinematics --
|g 6.1.
|t Rigid body animations --
|g 6.1.1.
|t Rotations with Euler angles --
|g 6.1.2.
|t Rotations around an arbitrary axis --
|g 6.1.3.
|t ModelView transformation --
|g 6.2.
|t Quaternions --
|g 6.2.1.
|t Spherical linear interpolation --
|g 6.3.
|t Deformable body animations --
|g 6.3.1.
|t Keyframes and inverse kinematics --
|g 6.3.2.
|t Clothes animation --
|g 6.3.3.
|t Particle systems --
|g 6.4.
|t Collisions in the physics engine --
|g 6.4.1.
|t Collision of a triangle with a plane --
|g 6.4.2.
|t Collision between two spheres, only one moving --
|g 6.4.3.
|t Collision of two moving spheres --
|g 6.4.4.
|t Collision of a sphere with a plane --
|g 6.4.5.
|t Collision of a sphere with a cube --
|g 6.4.6.
|t Separating axes theorem and bounding boxes --
|t References --
|g 7.
|t Raytracing --
|g 7.1.
|t Raytracing complexity --
|g 7.2.
|t Raytracing with analytical objects --
|g 7.3.
|t VR challenges --
|t References --
|g 8.
|t 2D transforms for VR with natural content --
|g 8.1.
|t affine transform --
|g 8.2.
|t homography --
|g 8.3.
|t Homography estimation --
|g 8.4.
|t Feature points and RANSAC outliers for panoramic stitching --
|g 8.5.
|t Homography and affine transform revisited --
|g 8.6.
|t Pose estimation for AR --
|t References --
|g 9.
|t 3DoF VR with natural content --
|g 9.1.
|t Stereoscopic viewing --
|g 9.2.
|t 360 panoramas --
|g 9.2.1.
|t 360 panoramas with planar reprojections --
|g 9.2.2.
|t Cylindrical and spherical 360 panoramas --
|g 9.2.3.
|t 360 panoramas with equirectangular projection images --
|t References --
|g 10.
|t VR goggles --
|g 10.1.
|t Wide angle lens distortion --
|g 10.1.1.
|t Wide angle lens model --
|g 10.1.2.
|t Radial distortion model --
|g 10.1.3.
|t VR goggles pre-distortion --
|g 10.2.
|t Asynchronous high frame rate rendering --
|g 10.3.
|t Stereoscopic time warping --
|g 10.4.
|t Advanced HMD rendering --
|g 10.4.1.
|t Optical systems --
|g 10.4.2.
|t Eye accommodation --
|t References --
|g 11.
|t 6DoF navigation --
|g 11.1.
|t 6DoF with point clouds --
|g 11.2.
|t Active depth sensing --
|g 11.3.
|t Time of flight --
|g 11.3.1.
|t Phase from a modulated light source --
|g 11.3.2.
|t Structured light --
|g 11.3.3.
|t Phase from interferometry --
|g 11.4.
|t Point cloud registration and densification --
|g 11.4.1.
|t Photogrammetry --
|g 11.4.2.
|t SLAM navigational applications --
|g 11.5.
|t 3D rendering of point clouds --
|g 11.5.1.
|t Poisson reconstruction --
|g 11.5.2.
|t Splatting --
|t References --
|g 12.
|t Towards 6DoF with image-based rendering --
|g 12.1.
|t Introduction --
|g 12.2.
|t Finding relative camera positions --
|g 12.2.1.
|t Epipolar geometry --
|g 12.2.2.
|t Rotation and translation from the essential and fundamental matrices --
|g 12.2.3.
|t Epipolar line equation --
|g 12.2.4.
|t Extrinsics with checkerboard calibration --
|g 12.2.5.
|t Extrinsics with sparse bundle adjustment --
|g 12.2.6.
|t Depth estimation --
|g 12.2.7.
|t Stereo matching --
|g 12.2.8.
|t Depth quantization --
|g 12.2.9.
|t Stereo matching and cost volumes --
|g 12.2.10.
|t Occlusions --
|g 12.2.11.
|t Stereo matching with adaptive windows around depth discontinuities --
|g 12.2.12.
|t Stereo matching with priors --
|g 12.2.13.
|t Uniform texture regions --
|g 12.2.14.
|t Epipolar plane image with multiple images --
|g 12.2.15.
|t Plane sweeping --
|g 12.3.
|t Graph cut --
|g 12.3.1.
|t binary graph cut --
|g 12.4.
|t MPEG reference depth estimation --
|g 12.5.
|t Depth estimation challenges --
|g 12.6.
|t 6DoF view synthesis with depth image-based rendering --
|g 12.6.1.
|t Morphing without depth --
|g 12.6.2.
|t Nyquist-Whittaker-Shannon and Petersen-Middleton in DIBR view synthesis --
|g 12.6.3.
|t Depth-based 2D pixel to 3D point reprojections --
|g 12.6.4.
|t Splatting and hole filling --
|g 12.6.5.
|t Super-pixels and hole filling --
|g 12.6.6.
|t Depth reliability in view synthesis --
|g 12.6.7.
|t MPEG-I view synthesis with estimated depth maps --
|g 12.6.8.
|t MPEG-I view synthesis with sensed depth maps --
|g 12.6.9.
|t Depth layered images-Google --
|g 12.7.
|t Use case I: view synthesis in holographic stereograms --
|g 12.8.
|t Use case II: view synthesis in integral photography --
|g 12.9.
|t Difference between PCC and DIBR --
|t References --
|g 13.
|t Multi-camera acquisition systems --
|g 13.1.
|t Stereo vision --
|g 13.2.
|t Multiview vision --
|g 13.2.1.
|t Geometry correction for camera array --
|g 13.2.2.
|t Colour correction for camera array --
|g 13.3.
|t Plenoptic imaging --
|g 13.3.1.
|t Processing tools for plenoptic camera --
|g 13.3.2.
|t Conversion from Lenslet to Multi view images for plenoptic camera 1.0 --
|t References --
|g 14.
|t 3D light field displays --
|g 14.1.
|t 3D TV --
|g 14.2.
|t Eye vision --
|g 14.3.
|t Surface light field system --
|g 14.4.
|t 1D-II 3D display system --
|g 14.5.
|t Integral photography --
|g 14.6.
|t Real-time free viewpoint television --
|g 14.7.
|t SMV256 --
|g 14.8.
|t Light field video camera system --
|g 14.9.
|t Multipoint camera and microphone system --
|g 14.10.
|t Walk-through system --
|g 14.11.
|t Ray emergent imaging (REI) --
|g 14.12.
|t Holografika --
|g 14.13.
|t Light field 3D display --
|g 14.14.
|t Aktina Vision --
|g 14.15.
|t IP by 3D VIVANT --
|g 14.16.
|t Projection type IP --
|g 14.17.
|t Tensor display --
|g 14.18.
|t Multi-, plenoptic-, coded-aperture-, multi-focus-camera to tensor display system --
|g 14.19.
|t 360° light field display --
|g 14.20.
|t 360° mirror scan --
|g 14.21.
|t Seelinder --
|g 14.22.
|t Holo Table --
|g 14.23.
|t fVisiOn --
|g 14.24.
|t Use cases of virtual reality systems --
|g 14.24.1.
|t Public use cases --
|g 14.24.2.
|t Professional use cases --
|g 14.24.3.
|t Scientific use cases --
|t References --
|g 15.
|t Visual media compression --
|g 15.1.
|t 3D video compression --
|g 15.1.1.
|t Image and video compression --
|g 15.2.
|t MPEG standardization and compression with 2D video codecs --
|g 15.2.1.
|t Cubemap video --
|g 15.2.2.
|t Multiview video and depth compression (3D-HEVC) --
|g 15.2.3.
|t Dense light field compression --
|g 15.3.
|t Future challenges in 2D video compression --
|g 15.4.
|t MPEG codecs for 3D immersion --
|g 15.4.1.
|t Point cloud coding with 2D video codecs --
|g 15.4.2.
|t MPEG immersive video compression --
|g 15.4.3.
|t Visual volumetric video coding --
|g 15.4.4.
|t Compression for light field displays --
|t References --
|g 16.
|t Conclusion and future perspectives.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
650 |
|
0 |
|a Virtual reality.
|0 http://id.loc.gov/authorities/subjects/sh92000880
|
650 |
|
2 |
|a Virtual Reality.
|0 (DNLM)D000076142
|
650 |
|
7 |
|a virtual reality.
|2 aat
|0 (CStmoGRI)aat300238469
|
650 |
|
7 |
|a Virtual reality.
|2 fast
|0 (OCoLC)fst01167688
|0 http://id.worldcat.org/fast/1167688
|
700 |
1 |
|
|a Teratani, Mehrdad.
|0 http://id.loc.gov/authorities/names/no2022056540
|
776 |
0 |
8 |
|i Print version:
|a Lafruit, Gauthier.
|t Virtual Reality and Light Field Immersive Video Technologies for Real-World Applications.
|d Stevenage : Institution of Engineering & Technology, ©2022
|z 9781785615788
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=6811597
|z Connect to this title online (unlimited simultaneous users allowed; 365 uses per year)
|t 0
|
907 |
|
|
|a .b38507377
|b 241001
|c 220214
|
916 |
|
|
|a GOBI ProQuest DDA purchased
|
918 |
|
|
|a .bckstg
|b 2016-12-01
|
919 |
|
|
|a .pcat
|b 2016-12-01
|
998 |
|
|
|a uww
|b 220607
|c m
|d z
|e l
|f eng
|g enk
|h 0
|
999 |
f |
f |
|i 3e31d510-a418-5956-9ae4-9b0593dcf7d1
|s 9d0e2d1c-4482-5e11-8a77-9d8c8bf5f125
|t 0
|