Visual object recognition /

The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and i...

Full description

Saved in:
Bibliographic Details
Main Author: Grauman, Kristen Lorraine, 1979-
Other Authors: Leibe, Bastian
Format: Electronic eBook
Language:English
Published: Cham, Switzerland : Springer, [2011]
Series:Synthesis lectures on artificial intelligence and machine learning ; #11.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000cam a2200000Ia 4500
001 b3939272
005 20240627104539.0
006 m o d
007 cr cn|||||||||
008 110504t20112011sz a ob 000 0 eng d
016 7 |a 015845549  |2 Uk 
020 |a 9781598299694  |q (electronic bk.) 
020 |a 1598299697  |q (electronic bk.) 
020 |a 1598299689 
020 |a 9781598299687 
020 |z 9781598299687  |q (pbk.) 
020 |a 9783031015533  |q (electronic bk.) 
020 |a 3031015533  |q (electronic bk.) 
035 |a (OCoLC)720114130  |z (OCoLC)785779140  |z (OCoLC)862121286  |z (OCoLC)923651970  |z (OCoLC)963749239  |z (OCoLC)991922505  |z (OCoLC)1047668921  |z (OCoLC)1058080862 
035 |a (OCoLC)720114130 
040 |a WAU  |b eng  |e pn  |c WAU  |d STF  |d UKMGB  |d UX0  |d E7B  |d N$T  |d OCLCQ  |d YDXCP  |d DEBSZ  |d OCLCQ  |d UMI  |d COO  |d OCLCQ  |d OKU  |d EBLCP  |d OCLCF  |d J2I  |d OCLCQ  |d ESU  |d PIFAG  |d RIU  |d KIJ  |d OCLCQ  |d CEF  |d INT  |d OCLCQ  |d YOU  |d OCLCQ  |d LEAUB  |d NJT  |d OCLCQ  |d AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d UtOrBLW 
049 |a STAW 
050 4 |a TA1634  |b .G7635 2011 
100 1 |a Grauman, Kristen Lorraine,  |d 1979-  |0 http://id.loc.gov/authorities/names/no2011070654 
245 1 0 |a Visual object recognition /  |c Kristen Grauman, Bastian Leibe. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2011] 
264 4 |c ©2011 
300 |a 1 online resource (xvii, 163 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Synthesis lectures on artificial intelligence and machine learning,  |x 1939-4616 ;  |v #11 
504 |a Includes bibliographical references (pages 133-162). 
505 0 |a Preface -- Acknowledgments -- Figure credits. 
505 8 |a 1. Introduction -- Overview -- Challenges -- The state of the art. 
505 8 |a 2. Overview: recognition of specific objects -- Global image representations -- Local feature representations. 
505 8 |a 3. Local features: detection and description -- Introduction -- Detection of interest points and regions -- Keypoint localization -- Scale invariant region detection -- Affine covariant region detection -- Orientation normalization -- Summary of local detectors -- Local descriptors -- The SIFT descriptor -- The SURF detector/descriptor -- Concluding remarks. 
505 8 |a 4. Matching local features -- Efficient similarity search -- Tree-based algorithms -- Hashing-based algorithms and binary codes -- A rule of thumb for reducing ambiguous matches -- Indexing features with visual vocabularies -- Creating a visual vocabulary -- Vocabulary trees -- Choices in vocabulary formation -- Inverted file indexing -- Concluding remarks. 
505 8 |a 5. Geometric verification of matched features -- Estimating geometric models -- Estimating similarity transformations -- Estimating affine transformations -- Homography estimation -- More general transformations -- Dealing with outliers -- RANSAC -- Generalized Hough transform -- Discussion. 
505 8 |a 6. Example systems: specific-object recognition -- Image matching -- Object recognition -- Large-scale image retrieval -- Mobile visual search -- Image auto-annotation -- Concluding remarks. 
505 8 |a 7. Overview: recognition of generic object categories. 
505 8 |a 8. Representations for object categories -- Window-based object representations -- Pixel intensities and colors -- Window descriptors: global gradients and texture -- Patch descriptors: local gradients and texture -- A hybrid representation: bags of visual words -- Contour and shape features -- Feature selection -- Part-based object representations -- Overview of part-based models -- Fully-connected models: the constellation model -- Star graph models -- Mixed representations -- Concluding remarks. 
505 8 |a 9. Generic object detection: finding and scoring candidates -- Detection via classification -- Speeding up window-based detection -- Limitations of window-based detection -- Detection with part-based models -- Combination classifiers -- Voting and the generalized Hough transform -- RANSAC -- Generalized distance transform. 
505 8 |a 10. Learning generic object category models -- Data annotation -- Learning window-based models -- Specialized similarity measures and kernels -- Learning part-based models -- Learning in the constellation model -- Learning in the implicit shape model -- Learning in the pictorial structure model. 
505 8 |a 11. Example systems: generic object recognition -- The Viola-Jones face detector -- Training process -- Recognition process -- Discussion -- The HOG person detector -- Bag-of-words image classification -- Training process -- Recognition process -- Discussion -- The implicit shape model -- Training process -- Recognition process -- Vote backprojection and top-down segmentation -- Hypothesis verification -- Discussion -- Deformable part-based models -- Training process -- Recognition process -- Discussion. 
505 8 |a 12. Other considerations and current challenges -- Benchmarks and datasets -- Context-based recognition -- Multi-viewpoint and multi-aspect recognition -- Role of video -- Integrated segmentation and recognition -- Supervision considerations in object category learning -- Using weakly labeled image data -- Maximizing the use of manual annotations -- Unsupervised object discovery -- Language, text, and images. 
505 8 |a 13. Conclusions -- Bibliography -- Authors' biographies. 
520 3 |a The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. 
546 |a English. 
650 0 |a Computer vision.  |0 http://id.loc.gov/authorities/subjects/sh85029549 
650 0 |a Pattern recognition systems.  |0 http://id.loc.gov/authorities/subjects/sh85098791 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687  |0 http://id.worldcat.org/fast/872687 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266  |0 http://id.worldcat.org/fast/1055266 
700 1 |a Leibe, Bastian.  |0 http://id.loc.gov/authorities/names/no2011070655 
740 0 |a Springer Nature Synthesis Collection of Technology Collection 3. 
776 0 8 |i Print version:  |a Grauman, Kristen Lorraine, 1979-  |t Visual object recognition.  |d [San Rafael, Calif.] : Morgan & Claypool Publishers, ©2011  |z 1598299689  |w (OCoLC)740853496 
830 0 |a Synthesis lectures on artificial intelligence and machine learning ;  |v #11.  |0 http://id.loc.gov/authorities/names/no2008023636 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://link.springer.com/10.1007/978-3-031-01553-3  |z Connect to this title online  |t 0 
907 |a .b39392727  |b 240629  |c 230418 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2022-07-07 
998 |a uww  |b 230418  |c m  |d z   |e l  |f eng  |g sz   |h 0 
999 f f |i 38709211-b3e2-503b-9903-9a59eeede489  |s b3aa5ffd-cab8-59ba-9b20-c7a8a4221847  |t 0