Enhanced carbon-based materials and their applications /

Saved in:
Bibliographic Details
Corporate Author: ProQuest (Firm)
Other Authors: Ooi, Poh Choon (Editor), Xie, Mengying (Editor), Dee, Chang Fu (Editor)
Format: Electronic eBook
Language:English
Published: Weinheim : Wiley-VCH, [2023]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Enhanced Carbon-Based Materials and Their Applications
  • 1.1 Overview
  • 1.2 Glance of Carbon-Based Materials
  • 1.3 Applications
  • 1.4 Outline of This Book
  • References
  • Chapter 2 Carbon-Based Nanomaterials: Synthesis and Characterizations
  • 2.1 Introduction
  • 2.1.1 Carbon
  • 2.1.2 Allotropes of Carbon
  • 2.2 Synthesis of Carbon-Based Nanostructures
  • 2.2.1 Chemical Vapor Deposition Technique
  • 2.2.1.1 Thermal Chemical Vapor Deposition
  • 2.2.1.2 Plasma-Enhanced Chemical Vapor Deposition
  • 2.2.2 Ion Irradiation Technique
  • 2.3 Characterization
  • 2.3.1 Raman Spectroscopic Characterization of Carbon Nanostructure Materials
  • 2.3.2 Electron Microscopy
  • 2.3.2.1 Scanning Electron Microscopy
  • 2.3.2.2 Transmission Electron Microscopy
  • 2.3.2.3 In Situ Transmission Electron Microscopy
  • 2.4 Summary
  • References
  • Chapter 3 Functional Carbon-Based Nanomaterials and Sensor Applications
  • 3.1 Introduction to Low-Dimensional Carbon-Based Nanomaterials
  • 3.2 Modification of Low-Dimensional Carbon-Based Nanomaterials
  • 3.3 Plasma-Based Synthesis of Heteroatom-Doped Graphene
  • 3.3.1 In Situ Plasma-Assisted Growth and Doping
  • 3.3.2 Post-Growth Plasma Treatment
  • 3.3.3 Properties of Heteroatom-Doped Graphene
  • 3.4 Doping Modulation in Graphene for Optoelectronic Applications
  • 3.5 Imperfections in Graphene for Strain-Pressure- Sensing Applications
  • 3.6 Structural Defect in Graphene for Gas-Sensing Applications
  • References
  • Chapter 4 Fabrication Techniques of Resistive Switching Carbon-Based Memories
  • 4.1 Introduction - Emerging Carbon-Based Memory Technologies
  • 4.2 Memristor-Based Memory
  • 4.3 Substrate Options
  • 4.4 Effect of Electrode Materials
  • 4.5 Fabrication Methods of Metal/Insulator/Metal Structure
  • 4.5.1 Spin Coating
  • 4.5.2 Spray Coating.
  • 4.5.3 Dip Coating
  • 4.5.4 Inkjet Printing
  • 4.5.5 Plasma Polymerization (PP) Deposition
  • 4.6 Conclusion
  • References
  • Chapter 5 Carbonous-Based Optoelectronic Devices
  • 5.1 Introduction
  • 5.2 Graphene-Based Optoelectronics
  • 5.3 Carbonous Materials in Photovoltaics
  • 5.4 Carbonous Materials in Dye-Sensitized Solar Cells
  • 5.5 Carbonous Materials in Perovskite Solar Cells (PSCs)
  • References
  • Chapter 6 Thermoelectric Energy Harvesters and Applications
  • 6.1 Introduction
  • 6.2 Thermoelectric Effect and Properties
  • 6.2.1 Seebeck Effect
  • 6.2.2 Peltier Effect
  • 6.2.3 Thomson Effect
  • 6.2.3.1 Figure-of-Merit and Power Factor
  • 6.3 Thermoelectric Power and Efficiency
  • 6.3.1 Simplified One-Dimensional Decoupled Model
  • 6.3.2 Three-Dimensional Coupled Multiphysics Model
  • 6.4 Thermoelectric Materials
  • 6.4.1 Inorganic Thermoelectric Materials
  • 6.4.2 Organic Thermoelectric Materials
  • 6.4.3 Hybrid Organic-Inorganic Thermoelectric Materials
  • 6.5 Application of Organic Thermoelectric Generators
  • 6.6 Summary/Future Perspective
  • References
  • Chapter 7 Carbon-Enhanced Piezoelectric Materials and Applications
  • 7.1 Introduction
  • 7.2 Carbon-Enhanced Piezoelectric Materials
  • 7.2.1 Inorganic Piezoelectric Materials
  • 7.2.2 Organic Piezoelectric Materials
  • 7.2.2.1 Carbon Nanotubes
  • 7.2.2.2 Graphene and Graphene-Based Materials
  • 7.2.2.3 Quantum Dots
  • 7.3 Fabrication Methods
  • 7.4 Applications
  • 7.4.1 Energy Harvesters
  • 7.4.2 Biomechanical Sensor
  • 7.4.3 Other Applications
  • 7.5 Conclusion
  • Acknowledgment
  • References
  • Chapter 8 Actuators Based On the Carbon-Enhanced Materials
  • 8.1 Introduction
  • 8.2 Actuation on the Molecular Scale
  • 8.3 Carbon Nanomaterials
  • 8.3.1 Graphene and Related Materials
  • 8.3.2 Carbon Nanotubes
  • 8.3.3 Fullerenes
  • 8.4 Carbon-Based Actuation.
  • 8.4.1 Carbon Nanotube-Based Actuators
  • 8.4.2 Graphene and Graphene Oxide Actuators
  • 8.4.3 Fullerene-Based Actuators
  • 8.5 Challenges and Prospectives of Actuators Based on Carbon Nanostructures
  • References
  • Chapter 9 Display Based on Carbon-Enhanced Materials
  • 9.1 Introduction
  • 9.2 Display Based on CDs
  • 9.2.1 Synthesis of CDs
  • 9.2.2 Optical Properties of CDs in Display
  • 9.2.3 CDs in LEDs Display Applications
  • 9.2.3.1 Photoluminescent LEDs
  • 9.2.3.2 Electroluminescent LEDs
  • 9.3 Display Based on Carbon Nanotubes
  • 9.3.1 CNTs Emission Material in Display
  • 9.3.2 CNTs as Alignment and Polarized Material in LCDs
  • 9.3.3 CNT-TFT in LCD and OLED
  • 9.3.4 Transparent Electrode and Touch Panel in the Display
  • 9.4 Display Based on Graphene and Graphene Oxide
  • 9.4.1 Graphene and Graphene Oxide as Liquid-Crystal Materials
  • 9.4.2 Graphene Transparent Electrode in the Display
  • 9.5 Summary and Outlook
  • References
  • Chapter 10 Enhanced Carbon-Based Materials and Their Applications
  • References
  • Index
  • EULA.