Dynamics and transport in macromolecular networks : theory, modelling, and experiments /

Saved in:
Bibliographic Details
Corporate Author: ProQuest (Firm)
Other Authors: YAN, L-T
Format: eBook
Language:English
Published: [S.l.] : WILEY VCH, 2024.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a2200000 a 4500
001 b4091344
003 CStclU
005 20240409081825.2
006 m o d
007 cr |n|||||||||
008 231207s2024 xx o 000 0 eng d
020 |a 9783527839568  |q (electronic bk. : oBook) 
020 |a 3527839569  |q (electronic bk. : oBook) 
020 |a 9783527839544  |q (electronic bk.) 
020 |a 3527839542  |q (electronic bk.) 
020 |z 3527350985 
020 |z 9783527350988 
024 7 |a 10.1002/9783527839568  |2 doi 
035 |a (NhCcYBP)ebc30984090 
040 |a NhCcYBP  |c NhCcYBP 
050 4 |a QH324.2  |b .D963 2024 
082 0 4 |a 572.80285  |2 23 
245 0 0 |a Dynamics and transport in macromolecular networks :  |b theory, modelling, and experiments /  |c Li-Tang Yan, editors. 
260 |a [S.l.] :  |b WILEY VCH,  |c 2024. 
300 |a 1 online resource. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Modeling (Visco)elasticity of Macromolecular and Biomacromolecular Networks -- 1.1 Permanent Macromolecular Networks -- 1.1.1 Mechanic Properties of a Single Polymer Chain -- 1.1.2 Statistical Models -- 1.1.3 Phenomenological Models -- 1.2 Permanent Biomacromolecular Networks -- 1.2.1 Elastic Models -- 1.2.2 Nonlinear Elasticity, Stability, and Normal Stress -- 1.3 Transient Macromolecular/Biomacromolecular Networks -- 1.3.1 Theoretical Framework -- 1.3.2 Applications -- 1.4 Outlooks -- References -- Chapter 2 Modeling Reactive Hydrogels: Focus on Controlled Degradation -- 2.1 Introduction -- 2.2 Mesoscale Modeling of Reactive Polymer Networks -- 2.2.1 Introducing Dissipative Particle Dynamics Approach for Reactive Polymer Networks -- 2.2.2 Addressing Unphysical Crossing of Polymer Bonds in DPD Along with Reactions -- 2.2.3 Modeling Cross-linking Due to Hydrosilylation Reaction -- 2.2.4 Mesoscale Modeling of Degradation and Erosion -- 2.3 Continuum Modeling of Reactive Hydrogels -- 2.3.1 Modeling Chemo- and Photo-Responsive Reactive Hydrogels -- 2.3.2 Continuum Modeling of Degradation of Polymer Network -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Dynamic Bonds in Associating Polymer Networks -- 3.1 Introduction of Dynamic Bonds -- 3.1.1 Dynamic Covalent Bonds -- 3.1.2 Dynamic Noncovalent Bonds -- 3.2 Physical Insight of Dynamic Bonds -- 3.2.1 Segmental and Chain Dynamics -- 3.2.2 Phase-Separated Aggregate Dynamics -- 3.3 Properties and Applications -- 3.3.1 Gas Separation -- 3.3.2 Adhesives and Additives -- 3.3.3 3D Printing -- 3.3.4 Polymer Electrolytes -- 3.4 Conclusion -- References -- Chapter 4 Direct Observation of Polymer Reptation in Entangled Solutions and Junction Fluctuations in Cross-linked Networks -- 4.1 Introduction. 
505 8 |a 4.2 Reptation in Entangled Solutions -- 4.2.1 Direct Confirmation of the Reptation Model -- 4.2.2 Tube Width Fluctuations -- 4.2.3 Dependence of Tube Width on Chain Position -- 4.2.4 Tube Width under Shear -- 4.2.5 Interactions Between Reptating Polymer Chains -- 4.3 Dynamic Fluctuations of Cross-links -- 4.3.1 Dynamics Probed by Neutron Scattering -- 4.3.2 Dynamics Probed by Direct Imaging -- 4.4 Conclusion -- Acknowledgments -- Conflict of Interest -- References -- Chapter 5 Recent Progress of Hydrogels in Fabrication of Meniscus Scaffolds -- 5.1 Introduction -- 5.2 Microstructure and Mechanical Properties of Meniscus -- 5.2.1 Meniscus Anatomy, Biochemical Content, and Cells -- 5.2.2 Biomechanical Properties of the Meniscus -- 5.3 Biomaterial Requirements for Constructing Meniscal Scaffolds -- 5.4 Hydrogel-Based Meniscus Scaffolds -- 5.4.1 Providing Matrix for Cell Growth and Biomacromolecules Delivery -- 5.4.1.1 Injectable Hydrogel-Based Meniscus Tissue-Engineering Scaffolds -- 5.4.1.2 High Strength and Biodegradable Hydrogel-Based Meniscus Scaffolds -- 5.4.1.3 3D-Printed Polymer/Hydrogel Composite Tissue-Engineering Scaffolds -- 5.4.2 Providing Load-Bearing Capability -- 5.4.2.1 Polyvinyl Alcohol (PVA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.2 Poly(N-acryloyl glycinamide) (PNAGA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.3 Poly(N-acryloylsemicarbazide) (PNASC) Hydrogel-Based Meniscus Scaffold -- 5.4.2.4 Other Systems -- 5.5 Mimicking Microstructure: The Key to Constructing the Next-Generation Meniscus Scaffolds -- 5.6 Conclusion -- References -- Chapter 6 Strong, Tough, and Fast-Recovery Hydrogels -- 6.1 Current Progress on Strong and Tough Hydrogels -- 6.2 Polymer-Supramolecular Double-Network Hydrogels -- 6.3 Hybrid Networks with Peptide-Metal Complexes -- 6.4 Hydrogels Cross-Linked with Hierarchically Assembled Peptide Structures. 
505 8 |a 6.5 Outlook -- References -- Chapter 7 Diffusio-Mechanical Theory of Polymer Network Swelling -- 7.1 Introduction -- 7.2 Swelling Model -- 7.2.1 General Theoretical Framework -- 7.2.1.1 Spherical Gel -- 7.2.1.2 Cylindrical Gel -- 7.2.1.3 Disk-Shaped Gel -- 7.2.2 Diffusio-Mechanical Model for Small Deformation -- 7.2.2.1 Spherical Gel -- 7.2.2.2 Cylindrical Gel -- 7.2.2.3 Disk-Shaped Gel -- 7.3 Results -- 7.4 Perspective -- 7.5 Conclusion -- Acknowledgments -- References -- Chapter 8 Theoretical and Computational Perspective on Hopping Diffusion of Nanoparticles in Cross-linked Polymer Networks -- 8.1 Introduction -- 8.2 2010s' Theories of Nanoparticle Hopping Diffusion -- 8.2.1 Scaling Theory by Cai, Paniukov, and Rubinstein -- 8.2.1.1 Confinement by Network as Attachment to Virtual Chains -- 8.2.1.2 Hopping Diffusion as Successive Individual Hopping Events -- 8.2.1.3 Beyond Homogeneous, Entanglement-Free, and Dry Cross-linked Networks -- 8.2.2 Microscopic Theory by Dell and Schweizer -- 8.3 Recent Computational and Theoretical Work -- 8.3.1 Evaluating Cai-Paniukov-Rubinstein and Dell-Schweizer Theories by Simulations -- 8.3.2 Exploring New Aspects of Cross-linked Networks - Stiffness and Geometry -- 8.4 Open Questions and Future Research Directions -- 8.4.1 Network Strands with Nonlinear Architectures -- 8.4.2 Sticky and Polymer-Tethered Nanoparticles -- 8.4.3 Nanoparticles with Anisotropic Shape -- 8.4.4 Active Nanoparticles - Nonequilibrium Effects -- 8.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Molecular Dynamics Simulations of the Network Strand Dynamics and Nanoparticle Diffusion in Elastomers -- 9.1 Introduction -- 9.2 Structures and Dynamics of Model Elastomer Networks -- 9.2.1 Randomly Cross-linked Elastomer Networks -- 9.2.1.1 Network Models and Simulation Methodology -- 9.2.1.2 Network Topology. 
505 8 |a 9.2.1.3 Effect of Cross-link Density on Network Dynamics -- 9.2.1.4 Effect of Cross-link Distribution on Network Dynamics -- 9.2.1.5 Effect of Temperature on Network Dynamics -- 9.2.2 End-linked Elastomer Networks -- 9.2.2.1 Network Models and Simulation Methodology -- 9.2.2.2 Network Topology -- 9.2.2.3 Network Dynamics -- 9.3 Diffusion Dynamics of Nanoparticles in Elastomers: Melts and Networks -- 9.3.1 Diffusion of Nanoparticles in Elastomer Melts -- 9.3.1.1 Models and Simulation Methodology -- 9.3.1.2 Size Effect on Nanoparticle Diffusion -- 9.3.1.3 Effect of Surface Grating on Nanoparticle Diffusion -- 9.3.1.4 Nanoparticle Diffusion in Bottlebrush Elastomers -- 9.3.2 Diffusion of Nanoparticles in Elastomer Networks -- 9.3.2.1 Models and Simulation Methodology -- 9.3.2.2 Size Effect on Nanoparticle Diffusion -- 9.3.2.3 Nanoparticle Diffusion in Attractive Networks -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Experimental and Theoretical Studies of Transport of Nanoparticles in Mucosal Tissues -- 10.1 Introduction -- 10.2 Enhancing Diffusivity of Deformable Particles to Overcome Mucus Barriers Via Adjusting Their Rigidity -- 10.2.1 The Preparation of the Hybrid NPs with Various Rigidities -- 10.2.2 The Diffusivity of Hybrid NPs with Different Rigidity in Mucus -- 10.2.3 The Interaction Between NPs with Different Rigidity and Mucus Network -- 10.2.4 The Theoretical Model to Describe the Diffusion Behavior of Deformable Nanoparticles in Adhesion Network -- 10.2.4.1 Shape Distribution of NPs -- 10.2.4.2 Diffusion Model -- 10.2.5 Summary -- 10.3 The Effect of the Shape on the Diffusivity of NPs in Mucus -- 10.3.1 The Diffusion Behaviors of NPs with Various Shapes in Mucus -- 10.3.2 The Diffusion Mechanisms of NPs with Different Shape in Biological Hydrogels. 
505 8 |a 10.3.3 Theoretical Model of Diffusion of Rod-Like Nanoparticles in Polymer Networks -- 10.3.3.1 Nonadhesive Diffusion Model -- 10.3.3.2 Adhesive Diffusion Model -- 10.3.4 The Effect of the Surface Polyethylene Glycols (PEGs) Distribution on the Diffusivity of Rod-Like NPs -- 10.3.5 Summary -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Physical Attributes of Nanoparticle Transport in Macromolecular Networks: Flexibility, Topology, and Entropy -- 11.1 Introduction -- 11.2 Effects of the Chain Flexibility of Strands -- 11.2.1 Dynamical Heterogeneity of a Semiflexible Network -- 11.2.2 Nonmonotonic Feature -- 11.2.3 Validation by MC Simulations and Experimental Data -- 11.3 Effects of Network Topology -- 11.3.1 Analytical Model for Free Energy Landscape -- 11.3.2 Network Topology and Free Energy Landscape -- 11.3.3 Topology-Dictated Scaling Regimes of Free Energy Change -- 11.3.4 Topology-Mediated Dynamical Regimes -- 11.4 Summary and Outlook -- Acknowledgments -- References -- Index -- EULA. 
533 |a Electronic reproduction.  |b Ann Arbor, MI  |n Available via World Wide Web. 
650 0 |a Bioinformatics. 
650 0 |a Genomics. 
700 1 |a YAN, L-T. 
710 2 |a ProQuest (Firm) 
776 0 8 |c Original  |z 3527350985  |z 9783527350988 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=30984090  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 0 
907 |a .b40913442  |b 240422  |c 240422 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g xx   |h 0 
917 |a GOBI ProQuest DDA 
919 |a .ulebk  |b 2024-02-15 
999 f f |i 137914a9-8b7a-5ed9-b882-f5683a834f06  |s 627ae7e6-724b-5fa4-9e62-15de5949715b  |t 0