Suggested Topics within your search.
Suggested Topics within your search.
Biomedical engineering
66
Medicine
62
Biomedical Engineering
54
Biomechanics
51
Engineering
50
Medicine & Public Health
48
Orthopedics
41
Life Sciences
26
Sports medicine
20
Biomedical materials
19
Sports Medicine
19
Human Physiology
18
Human physiology
18
Life sciences
18
Robotics
17
Human mechanics
16
Surgical Orthopedics
16
Biomechanical Phenomena
15
Surgery
15
Biomaterials
14
Rehabilitation
13
Anatomy
12
Biomedicine
12
Biophysics
12
Nervous system
12
Radiology
12
Tissue engineering
11
Bioinformatics
10
Imaging / Radiology
10
Mathematics
10
-
1
-
2by Alexander, R. McNeillSubjects: “…Biomechanics. http://id.loc.gov/authorities/subjects/sh85014236…”
Published 1975
Book -
3
-
4
-
5
-
6
-
7by Ennos, RolandSubjects: “…Biomechanics.…”
Published 2011
Connect to this title online (unlimited users allowed)
Electronic eBook -
8
-
9
-
10
-
11by Knudson, Duane V., 1961-Table of Contents: “…to Biomechanics of Human Movement -- Fundamentals of Biomechanics and Qualitative Analysis -- Biological/Structural Bases -- Anatomical Description and Its Limitations -- Mechanics of the Musculoskeletal System -- Mechanical Bases -- Linear and Angular Kinematics -- Linear Kinetics -- Angular Kinetics -- Fluid Mechanics -- Applications of Biomechanics in Qualitative Analysis -- Applying Biomechanics in Physical Education -- Applying Biomechanics in Coaching -- Applying Biomechanics in Strength and Conditioning -- Applying Biomechanics in Sports Medicine and Rehabilitation.…”
Published 2007
Connect to this title online
Electronic eBook -
12
-
13
-
14
-
15by Vogel, Steven, 1940-2015Subjects: “…Biomechanics. http://id.loc.gov/authorities/subjects/sh85014236…”
Published 2003
View Table of contents
Book -
16by Knudson, Duane V., 1961-Table of Contents: “…Introduction: Ch.1. Introduction to Biomechanics of human movement : What is biomechanics? …”
Published 2007
Book -
17Table of Contents: “…1 Introduction -- 1.1. Mechanics -- 1.2 Biomechanics -- 1.3 Basic concepts -- 1.4 Newton's Laws -- 1.5 Dimensional analysis -- 1.6 Systems of units -- 1.7 Conversion of units -- 1.8 Mathematics -- 1.9 Scalars and vectors -- 1.10 Modeling and approximations -- 1.11 Generalized procedure -- 1.12 Scope of the text -- 1.13 Notation -- References, suggested reading, and other resources -- 2 Force vector -- 2.1 Definition of force -- 2.2 Properties of force as a vector quantity -- 2.3 Dimension and units of force -- 2.4 Force systems -- 2.5 External and internal forces -- 2.6 Normal and tangential forces -- 2.7 Tensile and compressive force -- 2.8 Coplanar forces -- 2.9 Collinear forces -- 2.10 Concurrent forces -- 2.11 Parallel force -- 2.12 Gravitational force or weight -- 2.13 Distributed force systems and pressure -- 2.14 Frictional forces -- 2.15 Exercise problems -- 3 Moment and torque vectors -- 3.1 Definitions of moment and torque vectors -- 3.2 Magnitude of moment -- 3.3 Direction of moment - 3.4 Dimension and units of moment -- 3.5 Some fine points about the moment vector -- 3.6 The net or resultant moment -- 3.7 The couple and couple-moment -- 3.8 Translation of forces -- 3.9 Moment as a vector product -- 3.10 Exercise problems -- 4 Statics: systems in equilibrium -- 4.1 Overview -- 4.2 Newton's Laws of mechanics -- 4.3 Conditions for equilibrium -- 4.4 Free-body diagrams -- 4.5 Procedure to analyze systems in equilibrium -- 4.6 Notes concerning the equilibrium equations -- 4.7 Constraints and reactions -- 4.8 Simply supported structures -- 4.9 Cable-pulley systems and traction devices -- 4.10 Built-in structures -- 4.11 Systems involving friction -- 4.12 Center of gravity determination -- 4.13 Exercise problems -- 5 Applications of statics to biomechanics -- 5.1 Skeletal joints -- 5.2 Skeletal muscles -- 5.3 Basic considerations -- 5.4 Basic assumptions and limitations -- 5.5 Mechanics of the elbow -- 5.6 Mechanics of the shoulder -- 5.7 Mechanics of the spinal column -- 5.8 Mechanics of the hip -- 5.9 Mechanics of the knee -- 5.10 Mechanics of the ankle -- 5.11 Exercise problems -- References -- 6 Introduction to dynamics -- 6.1 Dynamics -- 6.2 Kinematics and kinetics -- 6.3 Linear, angular and general motions -- 6.4 Distance and displacement -- 6.5 Speed and velocity -- 6.6 Acceleration -- 6.7 Inertia and momentum -- 6.8 Degree of freedom -- 6.9 Particle concept -- 6.10 Reference frames and coordinate systems -- 6.11 Prerequisites for dynamic analysis -- 6.12 Topics to be covered -- 7 Linear kinetics -- 7.1 Uniaxial motion -- 7.2 Position, displacement, velocity, and acceleration -- 7.3 Dimensions and units -- 7.4 Measured and derived quantities -- 7.5 Uniaxial motion with constant acceleration -- 7.6 Examples of uniaxial motion -- 7.7 Biaxial motion -- 7.8 Position, velocity, and acceleration vectors -- 7.9 Biaxial motion with constant acceleration -- 7.10 Projectile motion -- 7.11 Applications to athletics -- 7.12 Exercise problems -- 8 Linear kinetics -- 8.1 Overview -- 8.2 Equations of motion -- 8.3 Special cases of translational motion -- 8.3.1 Force is constant -- 8.3.2 Force is a function of time -- 8.3.3 Force is a function of displacement -- 8.4 Procedure for problem solving in kinetics -- 8.5 Work and energy methods -- 8.6 Mechanical work -- 8.6.1 Work done by a constant force -- 8.6.2 Work done by a varying force -- 8.6.3 Work as a scalar product -- 8.7 Mechanical energy -- 8.7.1 Potential energy -- 8.7.2 Kinetic energy -- 8.8 Work-energy theorem -- 8.9 Conservation of energy principle -- 8.10 Dimension and units of work and energy -- 8.11 Power -- 8.12 Applications of energy methods -- 8.13 Exercise problems -- 9 Angular kinematics -- 9.1 Polar coordinates -- 9.2 Angular position and displacement -- 9.3 Angular velocity -- 9.4 Angular acceleration -- 9.5 Dimensions and units -- 9.6 Definitions of basic concepts -- 9.7 Rotational motion about a fixed axis -- 9.8 Relationships between linear and angular quantities -- 9.9 Uniform circular motion -- 9.10 Rotational motion with constant acceleration -- 9.11 Relative motion -- 9.12 Linkage systems -- 9.13 Exercise problems -- 10 Angular kinetics -- 10.1 Kinetics of angular motion -- 10.2 Torque and angular acceleration -- 10.3 Mass moments of inertia -- 10.4 Parallel-axis theorem -- 10.5 Radius of gyration -- 10.6 Segmental motion analysis -- 10.7 Rotational kinetic energy -- 10.8 angular work and power -- 10.9 Exercise problems -- 11 Impulse and momentum -- 11.1 Introduction -- 11.2 Linear momentum and impulse-momentum method -- 11.3 Application of the impulse-momentum method -- 11.4 Conservation of linear momentum -- 11.5 Impact and collisions -- 11.6 One-dimensional collisions -- 11.6.1 Perfectly inelastic collision -- 11.6.2 Perfectly elastic collision -- 11.6.3 Elastoplastic collision -- 11.7 Two-dimensional collisions -- 11.8 Angular impulse and momentum -- 11.9 Summary of basic equations -- 11.10 Kinetics of rigid bodies in plane motion -- 11.11 Exercise problems -- 12 Introduction to deformable body mechanics -- 12.1 Overview -- 12.2 Applied forces and deformations -- 12.3 Internal forces and moments -- 12.4 Stress and strain -- 12.5 General procedure -- 12.6 Mathematics involved -- 12.7 Topics to be covered -- Suggested reading -- 13 Stress and strain -- 13.1 Basic loading configurations -- 13.2 Uniaxial tension test -- 13.3 Load-elongation diagrams -- 13.4 Simple stress -- 13.5 Simple strain -- 13.6 Stress-strain diagrams -- 13.7 Elastic deformations -- 13.8 Hooke's Law -- 13.9 Plastic deformations -- 13.10 Necking -- 13.11 Work and strain energy -- 13.12 Strain hardening -- 13.13 Hysteresis loop -- 13.14 Properties based of stress-strain diagrams -- 13.15 Idealized models of material behavior -- 13.16 Mechanical properties of materials -- 13.17 Example problems -- 13.18 Exercise problems -- 14 Multiaxial deformations and stress analysis -- 14.1 Poisson's ratio -- 14.2 Biaxial and triaxial stresses -- 14.3 Stress transformation -- 14.4 Principal stresses -- 14.5 Mohr's circle -- 14.6 Failure theories -- 14.7 Allowable stress and factor of safety -- 14.8 Factors affecting the strength of materials -- 14.9 Fatigue and endurance -- 14.10 Stress concentration -- 14.11 Torsion -- 14.12 Bending -- 14.13 Combined loading -- 14.14 Exercise problems -- 15 Mechanical properties of biological tissues -- 15.1 Viscoelasticity -- 15.2 Analogies based on springs and dashpots -- 15.3 Empirical models of viscoelasticity -- 15.3.1 Kelvin-Voight model -- 15.3.2 Maxwell model -- 15.3.3 Standard solid model -- 15.4 Time-dependent material response -- 15.5 Comparison of elasticity and viscoelasticity -- 15.6 Common characteristics of biological tissues -- 15.7 Biomechanics of bone -- 15.7.1 Composition of bone -- 15.7.2 Mechanical properties of bone -- 15.7.3 Structural integrity of bone -- 15.7.4 Bone fractures -- 15.8 Tendons and ligaments -- 15.9 Skeletal muscles -- 15.10 Articular cartilage -- 15.11 Discussion -- 15.12 Exercise problems -- Appendix A: Plane geometry -- A.1 Angles -- A.2 Triangles -- A.3 Law of Sines -- A.4 Law of Cosine -- A.5 The right triangle -- A.6 Pythagorean theorem -- A.7 Sine, Cosine, and Tangent -- A.8 Inverse Sine, Cosine, ad Tangents -- A.9 Exercise problems -- Appendix B: Vector algebra -- B.1 Definitions -- B.2 Notation -- B.3 Multiplication of a vector by a scalar -- B.4 Negative vector -- B.5 Addition of vectors : graphical methods -- B.6 Subtraction of vectors -- B.7 Addition of more than two vectors -- B.8 Projection of vectors -- B.9 Resolution of vectors -- B.10 Unit vectors - B.11 Rectangular coordinates -- B.12 Addition of vectors : trigonometric method -- B.13 Three-dimensional components of vectors -- B.14 Dot (scalar) product of vectors -- B.15 Cross (vector) product of vectors -- B.16 Exercise problems -- Appendix C: Calculus -- C.1. …”
Book -
18by Ethier, Christopher Ross, 1959-Table of Contents: “…Cellular biomechanics -- Hemodynamics -- The circulatory system -- The interstitium -- Ocular biomechanics -- The respiratory system -- Muscles and movement -- Skeletal biomechanics -- Terrestrial locomotion.…”
Published 2008
Book -
19Published 2017Table of Contents: “…Introduction to fluid and solid mechanics -- Introduction to biomechanics of the cardiovascular system -- Blood and blood flow -- Arterial biomechanics I. …”
Connect to this title online
Electronic eBook -
20by Ostasevicius, Vytautas, Gaidys, Rimvydas, Janusas, Giedrius, Jurenas, Vytautas, Palevicius, Arvydas“…Lecture notes in computational vision and biomechanics ;…”
Published 2017
Connect to this title online
Electronic eBook