Showing 101 - 120 results of 296 for search '"One Direction"', query time: 0.25s Refine Results
  1. 101
    Published 2024
    Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium-Pore Titanosilicates -- 1.2.1 TS-1 Synthesis -- 1.2.2 Ti-MWW Synthesis -- 1.2.3 TS-2 Synthesis -- 1.2.4 Synthesis of Other Medium-Pore Titanosilicates -- 1.3 Synthesis of Large-Pore Titanosilicates -- 1.3.1 Ti-Beta Synthesis -- 1.3.2 Ti-MOR Synthesis -- 1.3.3 Ti-MSE Synthesis -- 1.3.4 Synthesis of Other Large-Pore Titanosilicates -- 1.4 Synthesis of Extra-Large-Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom-Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom-Containing Zeolites -- 2.2.1 Heteroatom-Containing MWW-Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom-Containing Layered Zeolites Built from fer-Layers -- 2.3 Novel Layered Heteroatom-Containing Zeolites -- 2.3.1 Heteroatom-Containing MFI-Type Layered Zeolites -- 2.3.2 Germanosilicate-Derived Heteroatom-Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn- and Zr-Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn- and Zr-Zeolites -- 3.2.1 Bottom-up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry-Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top-Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn- and Zr-Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation.…”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  2. 102
    Published 2020
    Table of Contents: “…Security Issues on Device Discovery -- 10.3.1.2.1. Direct Request and Response Discovery -- 10.3.1.2.2. …”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  3. 103
    Published 2024
    Table of Contents: “…Application of SAS-Based Simulation on Polish 2383-Bus Power System -- -- -- 3 POWER SYSTEM SIMULATION USING DIFFERENTIAL TRANSFORMATION METHOD by Yang Liu -- -- 3.1 Introduction to Differential Transformation 1 -- 3.2 Solving the Ordinary Differential Equation Model 6 -- 3.2.1 Derivation Process 6 -- 3.2.2 Solution Algorithm 11 -- 3.2.3 Case Study 13 -- 3.3 Solving the Differential-Algebraic Equation Model 22 -- 3.3.1 Basic Idea 22 -- 3.3.2 Derivation Process 24 -- 3.3.3 Solution Algorithm 27 -- 3.3.4 Case Study 28 -- 3.4 Broader Applications 32 -- 3.5 Conclusions and Future Directions 33 -- References 34 -- -- 4 ACCELERATED POWER SYSTEM SIMULATION USING ANALYTIC CONTINUATION TECHNIQUES -- by Chengxi Liu -- -- 4.1 Introduction to Analytic Continuation 3 -- 4.1.1 Direct Method (or matrix method) 5 -- 4.1.2 Continued fractions (i.e. …”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  4. 104
    Published 2023
    Table of Contents: “…Conclusion -- References -- Chapter Eleven: Longitudinal associations between academic achievement and depressive symptoms in adolescence: Methodolog ... -- 1. Direction of effects between academic achievement and depressive symptoms -- 2. …”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  5. 105
    Published 2024
    Table of Contents: “…4.2 Reptation in Entangled Solutions -- 4.2.1 Direct Confirmation of the Reptation Model -- 4.2.2 Tube Width Fluctuations -- 4.2.3 Dependence of Tube Width on Chain Position -- 4.2.4 Tube Width under Shear -- 4.2.5 Interactions Between Reptating Polymer Chains -- 4.3 Dynamic Fluctuations of Cross-links -- 4.3.1 Dynamics Probed by Neutron Scattering -- 4.3.2 Dynamics Probed by Direct Imaging -- 4.4 Conclusion -- Acknowledgments -- Conflict of Interest -- References -- Chapter 5 Recent Progress of Hydrogels in Fabrication of Meniscus Scaffolds -- 5.1 Introduction -- 5.2 Microstructure and Mechanical Properties of Meniscus -- 5.2.1 Meniscus Anatomy, Biochemical Content, and Cells -- 5.2.2 Biomechanical Properties of the Meniscus -- 5.3 Biomaterial Requirements for Constructing Meniscal Scaffolds -- 5.4 Hydrogel-Based Meniscus Scaffolds -- 5.4.1 Providing Matrix for Cell Growth and Biomacromolecules Delivery -- 5.4.1.1 Injectable Hydrogel-Based Meniscus Tissue-Engineering Scaffolds -- 5.4.1.2 High Strength and Biodegradable Hydrogel-Based Meniscus Scaffolds -- 5.4.1.3 3D-Printed Polymer/Hydrogel Composite Tissue-Engineering Scaffolds -- 5.4.2 Providing Load-Bearing Capability -- 5.4.2.1 Polyvinyl Alcohol (PVA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.2 Poly(N-acryloyl glycinamide) (PNAGA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.3 Poly(N-acryloylsemicarbazide) (PNASC) Hydrogel-Based Meniscus Scaffold -- 5.4.2.4 Other Systems -- 5.5 Mimicking Microstructure: The Key to Constructing the Next-Generation Meniscus Scaffolds -- 5.6 Conclusion -- References -- Chapter 6 Strong, Tough, and Fast-Recovery Hydrogels -- 6.1 Current Progress on Strong and Tough Hydrogels -- 6.2 Polymer-Supramolecular Double-Network Hydrogels -- 6.3 Hybrid Networks with Peptide-Metal Complexes -- 6.4 Hydrogels Cross-Linked with Hierarchically Assembled Peptide Structures.…”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    eBook
  6. 106
    Published 2023
    Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc-Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect-Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.…”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  7. 107
    by Goldberg, Yoav, 1980-
    Published 2017
    Table of Contents: “…Features for textual data -- 6.1 Typology of NLP classification problems -- 6.2 Features for NLP problems -- 6.2.1 Directly observable properties -- 6.2.2 Inferred linguistic properties -- 6.2.3 Core features vs. combination features -- 6.2.4 Ngram features -- 6.2.5 Distributional features.…”
    Connect to this title online
    Electronic eBook
  8. 108
  9. 109
    Published 2024
    Table of Contents: “…Balaguer -- 9.1 Introduction 185 -- 9.2 ROBO-SPECT Project 186 -- 9.2.1 Robotic System 187 -- 9.2.2 Intelligent Global Controller 191 -- 9.2.3 Ground Control Station 192 -- 9.2.4 Structural Assessment Tool 192 -- 9.3 Inspection Procedure 192 -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization 195 -- 9.5 Mobile Vehicle Navigation 197 -- 9.6 Field Experimental Results 198 -- 9.7 Conclusion 201 -- Bibliography 201 -- 10 BADGER: Intelligent Robotic System for Underground Construction 205 Santiago Martínez, Marcos Marín, Elisabeth Menéndez, Panagiotis Vartholomeos, Dimitrios Giakoumis, Alessandro Simi, and Carlos Balaguer -- 10.1 Introduction 205 -- 10.2 Boring Systems and Methods 207 -- 10.2.1 Directional Drilling Methods 207 -- 10.2.2 Drilling Robotic Systems 209 -- 10.3 Main Drawbacks 210 -- 10.4 BADGER System and Components 212 -- 10.4.1 Main Systems Description 212 -- 10.4.2 BADGER Operation 215 -- 10.5 Future Trends 218 -- Bibliography 218 -- 11 Robots for Underground Pipe Condition Assessment 221 Jaime Valls Miro -- 11.1 Introduction to Ferro-Magnetic Pipeline Maintenance 221 -- 11.1.1 NDT Inspection Taxonomy 222 -- 11.2 Inspection Robots 223 -- 11.2.1 Robot Kinematics and Locomotion 224 -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping 228 -- 11.3.1 Hardware and Software System Architecture 230 -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data 232 -- 11.4.1 Gaussian Processes 234 -- 11.5 Field Robotic CA Inspection Results 236 -- 11.6 Concluding Remarks 240 -- Bibliography 240 -- 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes 243 Sarath Kodagoda, Vinoth Kumar Viswanathan, Karthick Thiyagarajan, Antony Tran, Sathira Wickramanayake, Steve Barclay, and Dammika Vitanage -- 12.1 Introduction 243 -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls 245 -- 12.3 Robotic Tool for Field Deployment 252 -- 12.4 Laboratory Evaluation 254 -- 12.5 Field Deployment and Evaluation 255 -- 12.6 Lessons Learned and Future Directions 258 -- 12.7 Concluding Remarks 259 -- Bibliography 260 -- 13 A Climbing Robot for Maintenance Operations in Confined Spaces 263 Gibson Hu, Dinh Dang Khoa Le, and Dikai Liu -- 13.1 Introduction 263 -- 13.2 Robot Design 265 -- 13.3 Methodologies 271 -- 13.3.1 Perception 271 -- 13.3.2 Control 274 -- 13.3.3 Planning of Robot Body Motion 279 -- 13.4 Experiments and Results 279 -- 13.4.1 Experiment Setup 279 -- 13.4.2 Lab Test Results 280 -- 13.4.3 Field Trials in a Steel Bridge 282 -- 13.5 Discussion 283 -- 13.6 Conclusion 283 -- Bibliography 284 -- 14 Multi-UAV Systems for Inspection of Industrial and Public Infrastructures 285 Alvaro Caballero, Julio L. …”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  10. 110
  11. 111
    by Varma, Rajiv K.
    Published 2022
    Table of Contents: “…Varma -- 1.1 Background 1 -- 1.1.1 Concepts of Reactive and Active Power Control 1 -- 1.1.1.1 Reactive Power Control 1 -- 1.1.1.2 Active Power Control 4 -- 1.1.1.3 Frequency Response with Synchronous Machines5 -- 1.1.1.4 Fast Frequency Response 8 -- 1.2 Impacts of High Penetration of Solar PV Systems 9 -- 1.2.1 Steady-state Overvoltage 9 -- 1.2.2 Voltage Fluctuations 11 -- 1.2.3 Reverse Power Flow 11 -- 1.2.4 Transient Overvoltage 13 -- 1.2.5 Voltage Unbalance 14 -- 1.2.6 Decrease in Voltage Support Capability of Power Systems 14 -- 1.2.7 Interaction with Conventional Voltage Regulation Equipment 14 -- 1.2.8 Variability of Power Output 15 -- 1.2.9 Balancing Supply and Demand 15 -- 1.2.10 Changes in Active Power Flow in Feeders 16 -- 1.2.11 Change in Reactive Power Flow in Feeders 16 -- 1.2.12 Line Losses 17 -- 1.2.13 Harmonic Injections 17 -- 1.2.14 Low Short Circuit Levels 19 -- 1.2.15 Protection and Control Issues 20 -- 1.2.16 Short Circuit Current Issues 20 -- 1.2.17 Unintentional Islanding 21 -- 1.2.18 Frequency Regulation Issues due to Reduced Inertia 22 -- 1.2.18.1 Under Frequency Response 23 -- 1.2.18.2 Over Frequency Response 25 -- 1.2.19 Angular Stability Issues due to Reduced Inertia 26 -- 1.3 Development of Smart Inverters 28 -- 1.3.1 Developments in Germany 28 -- 1.3.2 Developments in the USA 29 -- 1.3.3 Development in Canada of Night and Day Control of Solar PV Farms as STATCOM (PVSTATCOM) 29 -- 1.4 Conclusions 29 -- References 30 -- 2 Smart Inverter Functions 35 -- 2.1 Capability Characteristics of Distributed Energy Resource (DER) 35 -- 2.1.1 Reactive Power Capability Characteristic of a Synchronous Generator 36 -- 2.2 General Considerations in Implementation of Smart Inverter Functions 37 -- 2.2.1 Performance Categories 38 -- 2.2.1.1 Normal Performance: 39 -- 2.2.1.2 Abnormal Performance 39 -- 2.2.2 Reactive Power Capability of DERs 39 -- 2.2.2.1 Active Power (Watt) Precedence Mode 40 -- 2.2.2.2 Reactive Power (Var) Precedence Mode 41 -- 2.3 Smart Inverter Functions for Reactive Power and Voltage Control 41 -- 2.3.1 Constant Power Factor Function 41 -- 2.3.2 Constant Reactive Power Function 41 -- 2.3.3 Voltage-Reactive Power (Volt-Var) Function 41 -- 2.3.4 Active Power-Reactive Power (Watt-Var or P-Q) Function 42 -- 2.3.5 Dynamic Voltage Support Function 44 -- 2.3.5.1 Dynamic Network Support Function 44 -- 2.3.5.2 Dynamic Reactive Current Support Function 45 -- 2.4 Smart Inverter Function for Voltage and Active Power Control 46 -- 2.4.1 Voltage-Active Power (Volt-Watt) Function 46 -- 2.4.2 Coordination with Volt-Var Function 48 -- 2.4.3 Dynamic Volt-Watt Function 48 -- 2.5 Low/High Voltage Ride-Through (L/H VRT) Function 50 -- 2.5.1 IEEE Standard 1547-2018 51 -- 2.5.2 North American Electric Reliability Corporation (NERC) Standard PRC-024 53 -- 2.6 Frequency-Watt Function 54 -- 2.6.1 Frequency-Watt Function 1 55 -- 2.6.2 Frequency-Watt Function 2 56 -- 2.6.3 Frequency Droop Function 56 -- 2.6.4 Frequency-Watt Function with Energy Storage 56 -- 2.7 Low/High Frequency Ride-Through (L/H FRT) Function 57 -- 2.7.1 IEEE Standard 1547-2018 58 -- 2.7.2 North American Electric Reliability Corporation (NERC) Standard PRC-024 59 -- 2.8 Ramp Rate 59 -- 2.8.1 Fast Frequency Response 61 -- 2.9 Smart Inverter Functions Related to DERs Based on Energy Storage Systems 61 -- 2.9.1 Direct Charge/Discharge Function 61 -- 2.9.2 Price-Based Charge/Discharge Function 62 -- 2.9.3 Coordinated Charge/Discharge Management Function 62 -- 2.9.3.1 Time-Based Charging Model 63 -- 2.9.3.2 Duration at Maximum Charging and Discharging Rates 63 -- 2.10 Limit Maximum Active Power Function 64 -- 2.10.1 Without Energy Storage 64 -- 2.10.2 With Energy Storage System 65 -- 2.11 Set Active Power Mode 65 -- 2.12 Active Power Smoothing Mode 65 -- 2.13 Active Power Following Function 65 -- 2.14 Prioritization of Different Functions 65 -- 2.14.1 Active Power-related Functions 66 -- 2.14.1.1 Functions Affecting Operating Boundaries 66 -- 2.14.1.2 Dynamic Functions 66 -- 2.14.1.3 Steady-State Functions Managing Watt Input/Output 66 -- 2.14.2 Reactive Power-Related Functions 66 -- 2.14.2.1 Dynamic Functions 66 -- 2.14.2.2 Steady-State Functions 66 -- 2.14.3 Smart Functions Under Abnormal Conditions 66 -- 2.15 Emerging Functions 67 -- 2.15.1 PV-STATCOM: Control of PV inverters as STATCOM during Night and Day 67 -- 2.15.2 Reactive Power at No Active Power Output 67 -- 2.16 Summary 68 -- References 68 -- 3 Modeling and Control of Three-Phase Smart PV Inverters 73 -- 3.1 Power Flow in a Smart Inverter System 73 -- 3.1.1 Active Power Flow 75 -- 3.1.1.1 Magnitude of Active Power Flow 75 -- 3.1.1.2 Direction of Active Power Flow 75 -- 3.1.2 Reactive Power Flow 75 -- 3.1.2.1 Magnitude of Reactive Power Flow 75 -- 3.1.2.2 Direction of Reactive Power Flow 76 -- 3.1.3 Implementation of Smart Inverter Functions 76 -- 3.2 Smart PV Inverter System 77 -- 3.3 Power Circuit Constituents of Smart Inverter System 79 -- 3.3.1 PV Panels 79 -- 3.3.2 Maximum Power Point Tracking (MPPT) Scheme 82 -- 3.3.3 Non-MPP Voltage Control 82 -- 3.3.4 Voltage Sourced Converter (VSC) 83 -- 3.3.4.1 Design of DC-Link Capacitor 84 -- 3.3.5 AC Filter 84 -- 3.3.6 Isolation Transformer 86 -- 3.4 Control Circuit Constituents of Smart Inverter System 86 -- 3.4.1 Measurement Filters 86 -- 3.4.2 abc-dq Transformation 87 -- 3.4.2.1 Concept 87 -- 3.4.2.2 Theoretical Basis 88 -- 3.4.2.3 Power in abc and dq Reference Frame 91 -- 3.4.3 Pulse Width Modulation (PWM) 92 -- 3.4.4 Phase-Locked Loop (PLL) 94 -- 3.4.4.1 Effect of PLL on Active and Reactive Power Output of VSC 97 -- 3.4.5 Current Controller 97 -- 3.4.6 DC-Link Voltage Controller 99 -- 3.5 Smart Inverter Voltage Controllers 100 -- 3.5.1 Volt-Var Control 101 -- 3.5.2 Closed-Loop Voltage Controller 101 -- 3.6 PV Plant Control 102 -- 3.7 Modeling Guidelines 104 -- 3.8 Summary 104 -- References 104 -- 4 PV-STATCOM: A New Smart PV Inverter and a New Facts Controller 107 -- 4.1 Concepts of PV-STATCOM 107 -- 4.2 Flexible AC Transmission Systems (FACTS) 107 -- 4.3 Static Var Compensator (SVC) 109 -- 4.3.1 Control System of SVC 110 -- 4.4 Synchronous Condenser 111 -- 4.5 Static Synchronous Compensator 113 -- 4.5.1 Control System of STATCOM 115 -- 4.6 Control Modes of SVC and STATCOM 118 -- 4.6.1 Dynamic Voltage Regulation 118 -- 4.6.1.1 Power Transfer Without Midpoint Voltage Regulation 119 -- 4.6.1.2 Power Transfer with Midpoint Voltage Regulation 119 -- 4.6.2 Modulation of Bus Voltage in Response to System Oscillations 121 -- 4.6.2.1 Damping of Power Oscillations with Reactive Power Control 121 -- 4.6.3 Load Compensation 122 -- 4.7 Photovoltaic-Static Synchronous Compensator 122 -- 4.8 Operating Modes of PV-STATCOM 124 -- 4.8.1 Nighttime 124 -- 4.8.2 Daytime with Active Power Priority 124 -- 4.8.3 Daytime with Reactive Power Priority 125 -- 4.8.3.1 Reactive Power Modulation After Full Active Power Curtailment 125 -- 4.8.3.2 Reactive Power Modulation After Partial Active Power Curtailment 126 -- 4.8.3.3 Simultaneous Active and Reactive Power Modulation After Partial Active Power Curtailment 126 -- 4.8.3.4 Simultaneous Active and Reactive Power Modulation with Pre-existing Active Power Curtailment 127 -- 4.8.4 Methodology of Modulation of Active Power 127 -- 4.9 Functions of PV-STATCOM 128 -- 4.9.1 A New Smart Inverter 128 -- 4.9.2 A New FACTS Controller 129 -- 4.10 Cost of Transforming an Existing Solar PV System into PV-STATCOM 129 -- 4.10.1 Constituents of a PV System 130 -- 4.10.2 Costing of PV-STATCOM 130 -- 4.10.2.1 Cost of 5 Mvar PV-STATCOM 131 -- 4.10.2.2 Cost of 100 Mvar PV-STATCOM 132 -- 4.10.3 Cost of a STATCOM 133 -- 4.10.3.1 Equipment Cost 133 -- 4.10.3.2 Infrastructure Costs 133 -- 4.11 Cost of Operating a PV-STATCOM 135 -- 4.11.1 Nighttime Operating Costs 135 -- 4.11.2 Daytime Operating Costs 135 -- 4.11.3 Additional Costs 135 -- 4.11.4 Technical Considerations of PV-STATCOM and STATCOM 136 -- 4.11.4.1 Number of Inverters 136 -- 4.11.4.2 Ability to Provide Full Reactive Power at Nighttime 136 -- 4.11.4.3 Transient Overvoltage and Overcurrent Rating 136 -- 4.11.4.4 Low Voltage Ride-through 136 -- 4.11.5 Potential of PV-STATCOM 137 -- 4.12 Summary 138 -- References 139 -- 5 PV-STATCOM Applications in Distribution Systems 145 -- 5.1 Night-Time Application of PV Solar Farm as STATCOM to Regulate Grid Voltage 145 -- 5.1.1 Modeling of Solar PV System 145 -- 5.1.2 Solar Farm Inverter Control 146 -- 5.1.3 Simulation Study 147 -- 5.1.4 Summary 148 -- 5.2 Increasing Wind Farm Connectivity with PV-STATCOM 148 -- 5.2.1 Study System 150 -- 5.2.2 Control System 150 -- 5.2.3 Model of Wind Farm 151 -- 5.2.4 Simulation Studies 151 -- 5.2.4.1 Mitigation of Steady-state Voltage Rise 151 -- 5.2.4.2 Control of Temporary Overvoltage 153 -- 5.2.4.3 PV-STATCOM Reactive Power Requirement 153 -- 5.2.4.4 Effect of Distance of PV-STATCOM from Wind Farm 153 -- 5.2.4.5 Increase in Wind Farm Connectivity 155 -- 5.2.5 Summary 155 -- 5.3 Dynamic Voltage Control by PV-STATCOM 156 -- 5.3.1 Study System 156 -- 5.3.2 Control System 157 -- 5.3.2.1 DC-link Voltage Control 157 -- 5.3.3 AC Voltage Control 157 -- 5.3.3.1 Power Factor Control (PFC) 157 -- 5.3.3.2 Operation Mode Selector 157 -- 5.3.4 PSCAD/EMTDC Simulation Studies 159 -- 5.3.4.1 Full STATCOM Mode - Daytime 159 -- 5.3.4.2 Full STATCOM Mode - Nighttime 161 -- 5.3.4.3 Low-voltage Ride-through (LVRT) 163 -- 5.3.5 Summary 163 -- 5.4 Enhancement of Solar Farm Connectivity by PV-STATCOM 165 -- 5.4.1 Study System 165 -- 5.4.2 System Modeling 166 -- 5.4.3 Control System 166 -- 5.4.3.1 Operation Mode Selector 168 -- 5.4.3.2 PCC Voltage Control 169 -- 5.4.3.3 TOV Detection Block 169 -- 5.4.4 Simulati ...…”
    Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
    Electronic eBook
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118
    Published 2017
    Book
  19. 119
    by Chin, David A.
    Published 2013
    Table of Contents: “…Machine generated contents note: 1.Introduction -- 1.1.Water-Resources Engineering -- 1.2.The Hydrologic Cycle -- 1.3.Design of Water-Resource Systems -- 1.3.1.Water-Control Systems -- 1.3.2.Water-Use Systems -- 1.3.3.Supporting Federal Agencies in the United States -- Problem -- 2.Fundamentals of Flow in Closed Conduits -- 2.1.Introduction -- 2.2.Single Pipelines -- 2.2.1.Steady-State Continuity Equation -- 2.2.2.Steady-State Momentum Equation -- 2.2.3.Steady-State Energy Equation -- 2.2.3.1.Energy and hydraulic grade lines -- 2.2.3.2.Velocity profile -- 2.2.3.3.Head losses in transitions and fittings -- 2.2.3.4.Head losses in noncircular conduits -- 2.2.3.5.Empirical friction-loss formulae -- 2.2.4.Water Hammer -- 2.3.Pipe Networks -- 2.3.1.Nodal Method -- 2.3.2.Loop Method -- 2.3.3.Application of Computer Programs -- 2.4.Pumps -- 2.4.1.Affinity Laws -- 2.4.2.Pump Selection -- 2.4.2.1.Commercially available pumps -- 2.4.2.2.System characteristics -- 2.4.2.3.Limits on pump location -- 2.4.3.Multiple-Pump Systems -- 2.4.4.Variable-Speed Pumps -- Problems -- 3.Design of Water-Distribution Systems -- 3.1.Introduction -- 3.2.Water Demand -- 3.2.1.Per-Capita Forecast Mode1 -- 3.2.1.1.Estimation of per-capita demand -- 3.2.1.2.Estimation of population -- 3.2.2.Temporal Variations in Water Demand -- 3.2.3.Fire Demand -- 3.2.4.Design Flows -- 3.3.Components of Water-Distribution Systems -- 3.3.1.Pipelines -- 3.3.1.1.Minimum size -- 3.3.1.2.Service lines -- 3.3.1.3.Pipe materials -- 3.3.2.Pumps -- 3.3.3.Valves -- 3.3.4.Meters -- 3.3.5.Fire Hydrants -- 3.3.6.Water-Storage Reservoirs -- 3.4.Performance Criteria for Water-Distribution Systems -- 3.4.1.Service Pressures -- 3.4.2.Allowable Velocities -- 3.4.3.Water Quality -- 3.4.4.Network Analysis -- 3.5.Building Water-Supply Systems -- 3.5.1.Specification of Design Flows -- 3.5.2.Specification of Minimum Pressures -- 3.5.3.Determination of Pipe Diameters -- Problems -- 4.Fundamentals of Flow in Open Channels -- 4.1.Introduction -- 4.2.Basic Principles -- 4.2.1.Steady-State Continuity Equation -- 4.2.2.Steady-State Momentum Equation -- 4.2.2.1.Darcy-Weisbach equation -- 4.2.2.2.Manning equation -- 4.2.2.3.Other equations -- 4.2.2.4.Velocity distribution -- 4.2.3.Steady-State Energy Equation -- 4.2.3.1.Energy grade line -- 4.2.3.2.Specific energy -- 4.3.Water-Surface Profiles -- 4.3.1.Profile Equation -- 4.3.2.Classification of Water-Surface Profiles -- 4.3.3.Hydraulic Jump -- 4.3.4.Computation of Water-Surface Profiles -- 4.3.4.1.Direct-integration method -- 4.3.4.2.Direct-step method -- 4.3.4.3.Standard-step method -- 4.3.4.4.Practical considerations -- 4.3.4.5.Profiles across bridges -- Problems -- 5.Design of Drainage Channels -- 5.1.Introduction -- 5.2.Basic Principles -- 5.2.1.Best Hydraulic Section -- 5.2.2.Boundary Shear Stress -- 5.2.3.Cohesive versus Noncohesive Materials -- 5.2.4.Bends -- 5.2.5.Channel Slopes -- 5.2.6.Freeboard -- 5.3.Design of Channels with Rigid Linings -- 5.4.Design of Channels with Flexible Linings -- 5.4.1.General Design Procedure -- 5.4.2.Vegetative Linings and Bare Soil -- 5.4.3.RECP Linings -- 5.4.4.Riprap, Cobble, and Gravel Linings -- 5.4.5.Gabions -- 5.5.Composite Linings -- Problems -- 6.Design of Sanitary Sewers -- 6.1.Introduction -- 6.2.Quantity of Wastewater -- 6.2.1.Residential Sources -- 6.2.2.Nonresidential Sources -- 6.2.3.Inflow and Infiltration (I/I) -- 6.2.4.Peaking Factors -- 6.3.Hydraulics of Sewers -- 6.3.1.Manning Equation with Constant n -- 6.3.2.Manning Equation with Variable n -- 6.3.3.Self-Cleansing -- 6.3.4.Scour Prevention -- 6.3.5.Design Computations for Diameter and Slope -- 6.3.6.Hydraulics of Manholes -- 6.4.System Design Criteria -- 6.4.1.System Layout -- 6.4.2.Pipe Material -- 6.4.3.Depth of Sanitary Sewer -- 6.4.4.Diameter and Slope of Pipes -- 6.4.5.Hydraulic Criteria -- 6.4.6.Manholes -- 6.4.7.Pump Stations -- 6.4.8.Force Mains -- 6.4.9.Hydrogen-Sulfide Control -- 6.4.10.Combined Sewers -- 6.5.Design Computations -- 6.5.1.Design Aids -- 6.5.1.1.Manning's n -- 6.5.1.2.Minimum slope for self-cleansing -- 6.5.2.Procedure for System Design -- Problems -- 7.Design of Hydraulic Structures -- 7.1.Introduction -- 7.2.Culverts -- 7.2.1.Hydraulics -- 7.2.1.1.Submerged entrances -- 7.2.1.2.Unsubmerged entrances -- 7.2.2.Design Constraints -- 7.2.3.Sizing Calculations -- 7.2.3.1.Fixed-headwater method -- 7.2.3.2.Fixed-flow method -- 7.2.3.3.Minimum-performance method -- 7.2.4.Roadway Overtopping -- 7.2.5.Riprap/Outlet Protection -- 7.3.Gates -- 7.3.1.Free Discharge -- 7.3.2.Submerged Discharge -- 7.3.3.Empirical Equations -- 7.4.Weirs -- 7.4.1.Sharp-Crested Weirs -- 7.4.1.1.Rectangular weirs -- 7.4.1.2.V-notch weirs -- 7.4.1.3.Compound weirs -- 7.4.1.4.Other types of sharp-crested weirs -- 7.4.2.Broad-Crested Weirs -- 7.4.2.1.Rectangular weirs -- 7.4.2.2.Compound weirs -- 7.4.2.3.Gabion weirs -- 7.5.Spillways -- 7.5.1.Uncontrolled Spillways -- 7.5.2.Controlled (Gated) Spillways -- 7.5.2.1.Gates seated on the spillway crest -- 7.5.2.2.Gates seated downstream of the spillway crest -- 7.6.Stilling Basins -- 7.6.1.Type Selection -- 7.6.2.Design Procedure -- 7.7.Dams and Reservoirs -- 7.7.1.Types of Dams -- 7.7.2.Reservoir Storage -- 7.7.2.1.Sediment accumulation -- 7.7.2.2.Determination of storage requirements -- 7.7.3.Hydropower -- 7.7.3.1.Turbines -- 7.7.3.2.Turbine performance -- 7.7.3.3.Feasibility of hydropower -- Problems -- 8.Probability and Statistics in Water-Resources Engineering -- 8.1.Introduction -- 8.2.Probability Distributions -- 8.2.1.Discrete Probability Distributions -- 8.2.2.Continuous Probability Distributions -- 8.2.3.Mathematical Expectation and Moments -- 8.2.4.Return Period -- 8.2.5.Common Probability Functions -- 8.2.5.1.Binomial distribution -- 8.2.5.2.Geometric distribution -- 8.2.5.3.Poisson distribution -- 8.2.5.4.Exponential distribution -- 8.2.5.5.Gamma/Pearson Type III distribution -- 8.2.5.6.Normal distribution -- 8.2.5.7.Log-normal distribution -- 8.2.5.8.Uniform distribution -- 8.2.5.9.Extreme-value distributions -- 8.2.5.10.Chi-square distribution -- 8.3.Analysis of Hydrologic Data -- 8.3.1.Estimation of Population Distribution -- 8.3.1.1.Probability distribution of observed data -- 8.3.1.2.Hypothesis tests -- 8.3.1.3.Model selection criteria -- 8.3.2.Estimation of Population Parameters -- 8.3.2.1.Method of moments -- 8.3.2.2.Maximum-likelihood method -- 8.3.2.3.Method of L-moments -- 8.3.3.Frequency Analysis -- 8.3.3.1.Normal distribution -- 8.3.3.2.Log-normal distribution -- 8.3.3.3.Gamma/Pearson Type III distribution -- 8.3.3.4.Log-Pearson Type III distribution -- 8.3.3.5.Extreme-value Type I distribution -- 8.3.3.6.General extreme-value (GEV) distribution -- 8.4.Uncertainty Analysis -- Problems -- 9.Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions -- 9.1.Introduction -- 9.2.Rainfall -- 9.2.1.Measurement of Rainfall -- 9.2.2.Statistics of Rainfall Data -- 9.2.2.1.Rainfall statistics in the United States -- 9.2.2.2.Secondary estimation of IDF curves -- 9.2.3.Spatial Averaging and Interpolation of Rainfall -- 9.2.4.Design Rainfall -- 9.2.4.1.Return period -- 9.2.4.2.Rainfall duration -- 9.2.4.3.Rainfall depth -- 9.2.4.4.Temporal distribution -- 9.2.4.5.Spatial distribution -- 9.2.5.Extreme Rainfall -- 9.2.5.1.Rational estimation method -- 9.2.5.2.Statistical estimation method -- 9.2.5.3.World-record precipitation amounts -- 9.2.5.4.Probable maximum storm -- 9.3.Rainfall Abstractions -- 9.3.1.Interception -- 9.3.2.Depression Storage -- 9.3.3.Infiltration -- 9.3.3.1.The infiltration process -- 9.3.3.2.Horton model -- 9.3.3.3.Green-Ampt model -- 9.3.3.4.NRCS curve-number model -- 9.3.3.5.Comparison of infiltration models -- 9.3.4.Rainfall Excess on Composite Areas -- 9.4.Baseflow -- Problems -- 10.Fundamentals of Surface-Water Hydrology II: Runoff -- 10.1.Introduction -- 10.2.Mechanisms of Surface Runoff -- 10.3.Time of Concentration -- 10.3.1.Overland Flow -- 10.3.1.1.Kinematic-wave equation -- 10.3.1.2.NRCS method -- 10.3.1.3.Kirpich equation -- 10.3.1.4.Izzard equation -- 10.3.1.5.Kerby equation -- 10.3.2.Channel Flow -- 10.3.3.Accuracy of Estimates -- 10.4.Peak-Runoff Models -- 10.4.1.The Rational Method -- 10.4.2.NRCS-TR55 Method -- 10.5.Continuous-Runoff Models -- 10.5.1.Unit-Hydrograph Theory -- 10.5.2.Instantaneous Unit Hydrograph -- 10.5.3.Unit-Hydrograph Models -- 10.5.3.1.Snyder unit-hydrograph model -- 10.5.3.2.NRCS dimensionless unit hydrograph -- 10.5.3.3.Accuracy of unit-hydrograph models -- 10.5.4.Time-Area Models -- 10.5.5.Kinematic-Wave Model -- 10.5.6.Nonlinear-Reservoir Model -- 10.5.7.Santa Barbara Urban Hydrograph Model -- 10.5.8.Extreme Runoff Events -- 10.6.Routing Models -- 10.6.1.Hydrologic Routing -- 10.6.1.1.Modified PuIs method -- 10.6.1.2.Muskingum method -- 10.6.2.Hydraulic Routing -- 10.7.Water-Quality Models -- 10.7.1.Event-Mean Concentrations -- 10.7.2.Regression Equations -- 10.7.2.1.USGS model -- 10.7.2.2.EPA model -- Problems -- 11.Design of Stormwater-Collection Systems -- 11.1.Introduction -- 11.2.Street Gutters -- 11.3.Inlets -- 11.3.1.Curb Inlets -- 11.3.2.Grate Inlets -- 11.3.3.Combination Inlets -- 11.3.4.Slotted Inlets -- 11.4.Roadside and Median Channels -- 11.5.Storm Sewers -- 11.5.1.Calculation of Design Flow Rates -- 11.5.2.Pipe Sizing and Selection -- 11.5.3.Manholes -- 11.5.4.Determination of Impervious Area -- 11.5.5.System-Design Computations -- 11.5.6.Other Design Considerations -- Problems -- 12.Design of Stormwater-Management Systems -- 12.1.Introduction -- 12.2.Performance Goals -- 12.2.1.Quantity Control -- 12.2.2.Quality Control -- 12.3.Design of Stormwater Control Measures -- 12.3.1.Storage Impoundments -- 12.3.1.1.Detention basins -- Design parameters -- 12.3.1.2.Wet detention basins -- 12.3.1.3.Dry detention basins -- 12.3.1.4.Design of outlet structures -- 12.3.1.5.Design for flood control -- 12.3.2.Infiltration Basins -- 12.3.3.Swales -- 12.3.3.1.Retention swales -- 12.3.3.2.Biofiltration swa…”
    Book
  20. 120