Suggested Topics within your search.
Suggested Topics within your search.
History
13
Design and construction
10
General
9
History and criticism
8
Social aspects
8
English language
7
Mathematics
7
SOCIAL SCIENCE
7
Study and teaching
7
Nanostructured materials
6
Electric power systems
5
Environmental aspects
5
Mathematical models
5
POLITICAL SCIENCE
5
Politics and government
5
Foreign relations
4
Industrial applications
4
Management
4
Materials
4
Political aspects
4
Renewable energy sources
4
Synthesis
4
Technological innovations
4
Wind power
4
Criticism and interpretation
3
Data processing
3
Decision making
3
Diplomatic relations
3
Discourse analysis
3
Electrical engineering
3
-
101Published 2024Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium-Pore Titanosilicates -- 1.2.1 TS-1 Synthesis -- 1.2.2 Ti-MWW Synthesis -- 1.2.3 TS-2 Synthesis -- 1.2.4 Synthesis of Other Medium-Pore Titanosilicates -- 1.3 Synthesis of Large-Pore Titanosilicates -- 1.3.1 Ti-Beta Synthesis -- 1.3.2 Ti-MOR Synthesis -- 1.3.3 Ti-MSE Synthesis -- 1.3.4 Synthesis of Other Large-Pore Titanosilicates -- 1.4 Synthesis of Extra-Large-Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom-Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom-Containing Zeolites -- 2.2.1 Heteroatom-Containing MWW-Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom-Containing Layered Zeolites Built from fer-Layers -- 2.3 Novel Layered Heteroatom-Containing Zeolites -- 2.3.1 Heteroatom-Containing MFI-Type Layered Zeolites -- 2.3.2 Germanosilicate-Derived Heteroatom-Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn- and Zr-Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn- and Zr-Zeolites -- 3.2.1 Bottom-up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry-Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top-Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn- and Zr-Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation.…”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
102Published 2020Table of Contents: “…Security Issues on Device Discovery -- 10.3.1.2.1. Direct Request and Response Discovery -- 10.3.1.2.2. …”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
103Published 2024Table of Contents: “…Application of SAS-Based Simulation on Polish 2383-Bus Power System -- -- -- 3 POWER SYSTEM SIMULATION USING DIFFERENTIAL TRANSFORMATION METHOD by Yang Liu -- -- 3.1 Introduction to Differential Transformation 1 -- 3.2 Solving the Ordinary Differential Equation Model 6 -- 3.2.1 Derivation Process 6 -- 3.2.2 Solution Algorithm 11 -- 3.2.3 Case Study 13 -- 3.3 Solving the Differential-Algebraic Equation Model 22 -- 3.3.1 Basic Idea 22 -- 3.3.2 Derivation Process 24 -- 3.3.3 Solution Algorithm 27 -- 3.3.4 Case Study 28 -- 3.4 Broader Applications 32 -- 3.5 Conclusions and Future Directions 33 -- References 34 -- -- 4 ACCELERATED POWER SYSTEM SIMULATION USING ANALYTIC CONTINUATION TECHNIQUES -- by Chengxi Liu -- -- 4.1 Introduction to Analytic Continuation 3 -- 4.1.1 Direct Method (or matrix method) 5 -- 4.1.2 Continued fractions (i.e. …”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
104Published 2023Table of Contents: “…Conclusion -- References -- Chapter Eleven: Longitudinal associations between academic achievement and depressive symptoms in adolescence: Methodolog ... -- 1. Direction of effects between academic achievement and depressive symptoms -- 2. …”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
105Published 2024Table of Contents: “…4.2 Reptation in Entangled Solutions -- 4.2.1 Direct Confirmation of the Reptation Model -- 4.2.2 Tube Width Fluctuations -- 4.2.3 Dependence of Tube Width on Chain Position -- 4.2.4 Tube Width under Shear -- 4.2.5 Interactions Between Reptating Polymer Chains -- 4.3 Dynamic Fluctuations of Cross-links -- 4.3.1 Dynamics Probed by Neutron Scattering -- 4.3.2 Dynamics Probed by Direct Imaging -- 4.4 Conclusion -- Acknowledgments -- Conflict of Interest -- References -- Chapter 5 Recent Progress of Hydrogels in Fabrication of Meniscus Scaffolds -- 5.1 Introduction -- 5.2 Microstructure and Mechanical Properties of Meniscus -- 5.2.1 Meniscus Anatomy, Biochemical Content, and Cells -- 5.2.2 Biomechanical Properties of the Meniscus -- 5.3 Biomaterial Requirements for Constructing Meniscal Scaffolds -- 5.4 Hydrogel-Based Meniscus Scaffolds -- 5.4.1 Providing Matrix for Cell Growth and Biomacromolecules Delivery -- 5.4.1.1 Injectable Hydrogel-Based Meniscus Tissue-Engineering Scaffolds -- 5.4.1.2 High Strength and Biodegradable Hydrogel-Based Meniscus Scaffolds -- 5.4.1.3 3D-Printed Polymer/Hydrogel Composite Tissue-Engineering Scaffolds -- 5.4.2 Providing Load-Bearing Capability -- 5.4.2.1 Polyvinyl Alcohol (PVA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.2 Poly(N-acryloyl glycinamide) (PNAGA) Hydrogel-Based Meniscus Scaffolds -- 5.4.2.3 Poly(N-acryloylsemicarbazide) (PNASC) Hydrogel-Based Meniscus Scaffold -- 5.4.2.4 Other Systems -- 5.5 Mimicking Microstructure: The Key to Constructing the Next-Generation Meniscus Scaffolds -- 5.6 Conclusion -- References -- Chapter 6 Strong, Tough, and Fast-Recovery Hydrogels -- 6.1 Current Progress on Strong and Tough Hydrogels -- 6.2 Polymer-Supramolecular Double-Network Hydrogels -- 6.3 Hybrid Networks with Peptide-Metal Complexes -- 6.4 Hydrogels Cross-Linked with Hierarchically Assembled Peptide Structures.…”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
eBook -
106Published 2023Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc-Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect-Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.…”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
107by Goldberg, Yoav, 1980-Table of Contents: “…Features for textual data -- 6.1 Typology of NLP classification problems -- 6.2 Features for NLP problems -- 6.2.1 Directly observable properties -- 6.2.2 Inferred linguistic properties -- 6.2.3 Core features vs. combination features -- 6.2.4 Ngram features -- 6.2.5 Distributional features.…”
Published 2017
Connect to this title online
Electronic eBook -
108
-
109Published 2024Table of Contents: “…Balaguer -- 9.1 Introduction 185 -- 9.2 ROBO-SPECT Project 186 -- 9.2.1 Robotic System 187 -- 9.2.2 Intelligent Global Controller 191 -- 9.2.3 Ground Control Station 192 -- 9.2.4 Structural Assessment Tool 192 -- 9.3 Inspection Procedure 192 -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization 195 -- 9.5 Mobile Vehicle Navigation 197 -- 9.6 Field Experimental Results 198 -- 9.7 Conclusion 201 -- Bibliography 201 -- 10 BADGER: Intelligent Robotic System for Underground Construction 205 Santiago Martínez, Marcos Marín, Elisabeth Menéndez, Panagiotis Vartholomeos, Dimitrios Giakoumis, Alessandro Simi, and Carlos Balaguer -- 10.1 Introduction 205 -- 10.2 Boring Systems and Methods 207 -- 10.2.1 Directional Drilling Methods 207 -- 10.2.2 Drilling Robotic Systems 209 -- 10.3 Main Drawbacks 210 -- 10.4 BADGER System and Components 212 -- 10.4.1 Main Systems Description 212 -- 10.4.2 BADGER Operation 215 -- 10.5 Future Trends 218 -- Bibliography 218 -- 11 Robots for Underground Pipe Condition Assessment 221 Jaime Valls Miro -- 11.1 Introduction to Ferro-Magnetic Pipeline Maintenance 221 -- 11.1.1 NDT Inspection Taxonomy 222 -- 11.2 Inspection Robots 223 -- 11.2.1 Robot Kinematics and Locomotion 224 -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping 228 -- 11.3.1 Hardware and Software System Architecture 230 -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data 232 -- 11.4.1 Gaussian Processes 234 -- 11.5 Field Robotic CA Inspection Results 236 -- 11.6 Concluding Remarks 240 -- Bibliography 240 -- 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes 243 Sarath Kodagoda, Vinoth Kumar Viswanathan, Karthick Thiyagarajan, Antony Tran, Sathira Wickramanayake, Steve Barclay, and Dammika Vitanage -- 12.1 Introduction 243 -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls 245 -- 12.3 Robotic Tool for Field Deployment 252 -- 12.4 Laboratory Evaluation 254 -- 12.5 Field Deployment and Evaluation 255 -- 12.6 Lessons Learned and Future Directions 258 -- 12.7 Concluding Remarks 259 -- Bibliography 260 -- 13 A Climbing Robot for Maintenance Operations in Confined Spaces 263 Gibson Hu, Dinh Dang Khoa Le, and Dikai Liu -- 13.1 Introduction 263 -- 13.2 Robot Design 265 -- 13.3 Methodologies 271 -- 13.3.1 Perception 271 -- 13.3.2 Control 274 -- 13.3.3 Planning of Robot Body Motion 279 -- 13.4 Experiments and Results 279 -- 13.4.1 Experiment Setup 279 -- 13.4.2 Lab Test Results 280 -- 13.4.3 Field Trials in a Steel Bridge 282 -- 13.5 Discussion 283 -- 13.6 Conclusion 283 -- Bibliography 284 -- 14 Multi-UAV Systems for Inspection of Industrial and Public Infrastructures 285 Alvaro Caballero, Julio L. …”
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
110
-
111by Varma, Rajiv K.Table of Contents: “…Varma -- 1.1 Background 1 -- 1.1.1 Concepts of Reactive and Active Power Control 1 -- 1.1.1.1 Reactive Power Control 1 -- 1.1.1.2 Active Power Control 4 -- 1.1.1.3 Frequency Response with Synchronous Machines5 -- 1.1.1.4 Fast Frequency Response 8 -- 1.2 Impacts of High Penetration of Solar PV Systems 9 -- 1.2.1 Steady-state Overvoltage 9 -- 1.2.2 Voltage Fluctuations 11 -- 1.2.3 Reverse Power Flow 11 -- 1.2.4 Transient Overvoltage 13 -- 1.2.5 Voltage Unbalance 14 -- 1.2.6 Decrease in Voltage Support Capability of Power Systems 14 -- 1.2.7 Interaction with Conventional Voltage Regulation Equipment 14 -- 1.2.8 Variability of Power Output 15 -- 1.2.9 Balancing Supply and Demand 15 -- 1.2.10 Changes in Active Power Flow in Feeders 16 -- 1.2.11 Change in Reactive Power Flow in Feeders 16 -- 1.2.12 Line Losses 17 -- 1.2.13 Harmonic Injections 17 -- 1.2.14 Low Short Circuit Levels 19 -- 1.2.15 Protection and Control Issues 20 -- 1.2.16 Short Circuit Current Issues 20 -- 1.2.17 Unintentional Islanding 21 -- 1.2.18 Frequency Regulation Issues due to Reduced Inertia 22 -- 1.2.18.1 Under Frequency Response 23 -- 1.2.18.2 Over Frequency Response 25 -- 1.2.19 Angular Stability Issues due to Reduced Inertia 26 -- 1.3 Development of Smart Inverters 28 -- 1.3.1 Developments in Germany 28 -- 1.3.2 Developments in the USA 29 -- 1.3.3 Development in Canada of Night and Day Control of Solar PV Farms as STATCOM (PVSTATCOM) 29 -- 1.4 Conclusions 29 -- References 30 -- 2 Smart Inverter Functions 35 -- 2.1 Capability Characteristics of Distributed Energy Resource (DER) 35 -- 2.1.1 Reactive Power Capability Characteristic of a Synchronous Generator 36 -- 2.2 General Considerations in Implementation of Smart Inverter Functions 37 -- 2.2.1 Performance Categories 38 -- 2.2.1.1 Normal Performance: 39 -- 2.2.1.2 Abnormal Performance 39 -- 2.2.2 Reactive Power Capability of DERs 39 -- 2.2.2.1 Active Power (Watt) Precedence Mode 40 -- 2.2.2.2 Reactive Power (Var) Precedence Mode 41 -- 2.3 Smart Inverter Functions for Reactive Power and Voltage Control 41 -- 2.3.1 Constant Power Factor Function 41 -- 2.3.2 Constant Reactive Power Function 41 -- 2.3.3 Voltage-Reactive Power (Volt-Var) Function 41 -- 2.3.4 Active Power-Reactive Power (Watt-Var or P-Q) Function 42 -- 2.3.5 Dynamic Voltage Support Function 44 -- 2.3.5.1 Dynamic Network Support Function 44 -- 2.3.5.2 Dynamic Reactive Current Support Function 45 -- 2.4 Smart Inverter Function for Voltage and Active Power Control 46 -- 2.4.1 Voltage-Active Power (Volt-Watt) Function 46 -- 2.4.2 Coordination with Volt-Var Function 48 -- 2.4.3 Dynamic Volt-Watt Function 48 -- 2.5 Low/High Voltage Ride-Through (L/H VRT) Function 50 -- 2.5.1 IEEE Standard 1547-2018 51 -- 2.5.2 North American Electric Reliability Corporation (NERC) Standard PRC-024 53 -- 2.6 Frequency-Watt Function 54 -- 2.6.1 Frequency-Watt Function 1 55 -- 2.6.2 Frequency-Watt Function 2 56 -- 2.6.3 Frequency Droop Function 56 -- 2.6.4 Frequency-Watt Function with Energy Storage 56 -- 2.7 Low/High Frequency Ride-Through (L/H FRT) Function 57 -- 2.7.1 IEEE Standard 1547-2018 58 -- 2.7.2 North American Electric Reliability Corporation (NERC) Standard PRC-024 59 -- 2.8 Ramp Rate 59 -- 2.8.1 Fast Frequency Response 61 -- 2.9 Smart Inverter Functions Related to DERs Based on Energy Storage Systems 61 -- 2.9.1 Direct Charge/Discharge Function 61 -- 2.9.2 Price-Based Charge/Discharge Function 62 -- 2.9.3 Coordinated Charge/Discharge Management Function 62 -- 2.9.3.1 Time-Based Charging Model 63 -- 2.9.3.2 Duration at Maximum Charging and Discharging Rates 63 -- 2.10 Limit Maximum Active Power Function 64 -- 2.10.1 Without Energy Storage 64 -- 2.10.2 With Energy Storage System 65 -- 2.11 Set Active Power Mode 65 -- 2.12 Active Power Smoothing Mode 65 -- 2.13 Active Power Following Function 65 -- 2.14 Prioritization of Different Functions 65 -- 2.14.1 Active Power-related Functions 66 -- 2.14.1.1 Functions Affecting Operating Boundaries 66 -- 2.14.1.2 Dynamic Functions 66 -- 2.14.1.3 Steady-State Functions Managing Watt Input/Output 66 -- 2.14.2 Reactive Power-Related Functions 66 -- 2.14.2.1 Dynamic Functions 66 -- 2.14.2.2 Steady-State Functions 66 -- 2.14.3 Smart Functions Under Abnormal Conditions 66 -- 2.15 Emerging Functions 67 -- 2.15.1 PV-STATCOM: Control of PV inverters as STATCOM during Night and Day 67 -- 2.15.2 Reactive Power at No Active Power Output 67 -- 2.16 Summary 68 -- References 68 -- 3 Modeling and Control of Three-Phase Smart PV Inverters 73 -- 3.1 Power Flow in a Smart Inverter System 73 -- 3.1.1 Active Power Flow 75 -- 3.1.1.1 Magnitude of Active Power Flow 75 -- 3.1.1.2 Direction of Active Power Flow 75 -- 3.1.2 Reactive Power Flow 75 -- 3.1.2.1 Magnitude of Reactive Power Flow 75 -- 3.1.2.2 Direction of Reactive Power Flow 76 -- 3.1.3 Implementation of Smart Inverter Functions 76 -- 3.2 Smart PV Inverter System 77 -- 3.3 Power Circuit Constituents of Smart Inverter System 79 -- 3.3.1 PV Panels 79 -- 3.3.2 Maximum Power Point Tracking (MPPT) Scheme 82 -- 3.3.3 Non-MPP Voltage Control 82 -- 3.3.4 Voltage Sourced Converter (VSC) 83 -- 3.3.4.1 Design of DC-Link Capacitor 84 -- 3.3.5 AC Filter 84 -- 3.3.6 Isolation Transformer 86 -- 3.4 Control Circuit Constituents of Smart Inverter System 86 -- 3.4.1 Measurement Filters 86 -- 3.4.2 abc-dq Transformation 87 -- 3.4.2.1 Concept 87 -- 3.4.2.2 Theoretical Basis 88 -- 3.4.2.3 Power in abc and dq Reference Frame 91 -- 3.4.3 Pulse Width Modulation (PWM) 92 -- 3.4.4 Phase-Locked Loop (PLL) 94 -- 3.4.4.1 Effect of PLL on Active and Reactive Power Output of VSC 97 -- 3.4.5 Current Controller 97 -- 3.4.6 DC-Link Voltage Controller 99 -- 3.5 Smart Inverter Voltage Controllers 100 -- 3.5.1 Volt-Var Control 101 -- 3.5.2 Closed-Loop Voltage Controller 101 -- 3.6 PV Plant Control 102 -- 3.7 Modeling Guidelines 104 -- 3.8 Summary 104 -- References 104 -- 4 PV-STATCOM: A New Smart PV Inverter and a New Facts Controller 107 -- 4.1 Concepts of PV-STATCOM 107 -- 4.2 Flexible AC Transmission Systems (FACTS) 107 -- 4.3 Static Var Compensator (SVC) 109 -- 4.3.1 Control System of SVC 110 -- 4.4 Synchronous Condenser 111 -- 4.5 Static Synchronous Compensator 113 -- 4.5.1 Control System of STATCOM 115 -- 4.6 Control Modes of SVC and STATCOM 118 -- 4.6.1 Dynamic Voltage Regulation 118 -- 4.6.1.1 Power Transfer Without Midpoint Voltage Regulation 119 -- 4.6.1.2 Power Transfer with Midpoint Voltage Regulation 119 -- 4.6.2 Modulation of Bus Voltage in Response to System Oscillations 121 -- 4.6.2.1 Damping of Power Oscillations with Reactive Power Control 121 -- 4.6.3 Load Compensation 122 -- 4.7 Photovoltaic-Static Synchronous Compensator 122 -- 4.8 Operating Modes of PV-STATCOM 124 -- 4.8.1 Nighttime 124 -- 4.8.2 Daytime with Active Power Priority 124 -- 4.8.3 Daytime with Reactive Power Priority 125 -- 4.8.3.1 Reactive Power Modulation After Full Active Power Curtailment 125 -- 4.8.3.2 Reactive Power Modulation After Partial Active Power Curtailment 126 -- 4.8.3.3 Simultaneous Active and Reactive Power Modulation After Partial Active Power Curtailment 126 -- 4.8.3.4 Simultaneous Active and Reactive Power Modulation with Pre-existing Active Power Curtailment 127 -- 4.8.4 Methodology of Modulation of Active Power 127 -- 4.9 Functions of PV-STATCOM 128 -- 4.9.1 A New Smart Inverter 128 -- 4.9.2 A New FACTS Controller 129 -- 4.10 Cost of Transforming an Existing Solar PV System into PV-STATCOM 129 -- 4.10.1 Constituents of a PV System 130 -- 4.10.2 Costing of PV-STATCOM 130 -- 4.10.2.1 Cost of 5 Mvar PV-STATCOM 131 -- 4.10.2.2 Cost of 100 Mvar PV-STATCOM 132 -- 4.10.3 Cost of a STATCOM 133 -- 4.10.3.1 Equipment Cost 133 -- 4.10.3.2 Infrastructure Costs 133 -- 4.11 Cost of Operating a PV-STATCOM 135 -- 4.11.1 Nighttime Operating Costs 135 -- 4.11.2 Daytime Operating Costs 135 -- 4.11.3 Additional Costs 135 -- 4.11.4 Technical Considerations of PV-STATCOM and STATCOM 136 -- 4.11.4.1 Number of Inverters 136 -- 4.11.4.2 Ability to Provide Full Reactive Power at Nighttime 136 -- 4.11.4.3 Transient Overvoltage and Overcurrent Rating 136 -- 4.11.4.4 Low Voltage Ride-through 136 -- 4.11.5 Potential of PV-STATCOM 137 -- 4.12 Summary 138 -- References 139 -- 5 PV-STATCOM Applications in Distribution Systems 145 -- 5.1 Night-Time Application of PV Solar Farm as STATCOM to Regulate Grid Voltage 145 -- 5.1.1 Modeling of Solar PV System 145 -- 5.1.2 Solar Farm Inverter Control 146 -- 5.1.3 Simulation Study 147 -- 5.1.4 Summary 148 -- 5.2 Increasing Wind Farm Connectivity with PV-STATCOM 148 -- 5.2.1 Study System 150 -- 5.2.2 Control System 150 -- 5.2.3 Model of Wind Farm 151 -- 5.2.4 Simulation Studies 151 -- 5.2.4.1 Mitigation of Steady-state Voltage Rise 151 -- 5.2.4.2 Control of Temporary Overvoltage 153 -- 5.2.4.3 PV-STATCOM Reactive Power Requirement 153 -- 5.2.4.4 Effect of Distance of PV-STATCOM from Wind Farm 153 -- 5.2.4.5 Increase in Wind Farm Connectivity 155 -- 5.2.5 Summary 155 -- 5.3 Dynamic Voltage Control by PV-STATCOM 156 -- 5.3.1 Study System 156 -- 5.3.2 Control System 157 -- 5.3.2.1 DC-link Voltage Control 157 -- 5.3.3 AC Voltage Control 157 -- 5.3.3.1 Power Factor Control (PFC) 157 -- 5.3.3.2 Operation Mode Selector 157 -- 5.3.4 PSCAD/EMTDC Simulation Studies 159 -- 5.3.4.1 Full STATCOM Mode - Daytime 159 -- 5.3.4.2 Full STATCOM Mode - Nighttime 161 -- 5.3.4.3 Low-voltage Ride-through (LVRT) 163 -- 5.3.5 Summary 163 -- 5.4 Enhancement of Solar Farm Connectivity by PV-STATCOM 165 -- 5.4.1 Study System 165 -- 5.4.2 System Modeling 166 -- 5.4.3 Control System 166 -- 5.4.3.1 Operation Mode Selector 168 -- 5.4.3.2 PCC Voltage Control 169 -- 5.4.3.3 TOV Detection Block 169 -- 5.4.4 Simulati ...…”
Published 2022
Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Electronic eBook -
112
-
113
-
114
-
115
-
116by Head, ChrisConnect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Published 2018
Electronic eBook -
117
-
118
-
119by Chin, David A.Table of Contents: “…Machine generated contents note: 1.Introduction -- 1.1.Water-Resources Engineering -- 1.2.The Hydrologic Cycle -- 1.3.Design of Water-Resource Systems -- 1.3.1.Water-Control Systems -- 1.3.2.Water-Use Systems -- 1.3.3.Supporting Federal Agencies in the United States -- Problem -- 2.Fundamentals of Flow in Closed Conduits -- 2.1.Introduction -- 2.2.Single Pipelines -- 2.2.1.Steady-State Continuity Equation -- 2.2.2.Steady-State Momentum Equation -- 2.2.3.Steady-State Energy Equation -- 2.2.3.1.Energy and hydraulic grade lines -- 2.2.3.2.Velocity profile -- 2.2.3.3.Head losses in transitions and fittings -- 2.2.3.4.Head losses in noncircular conduits -- 2.2.3.5.Empirical friction-loss formulae -- 2.2.4.Water Hammer -- 2.3.Pipe Networks -- 2.3.1.Nodal Method -- 2.3.2.Loop Method -- 2.3.3.Application of Computer Programs -- 2.4.Pumps -- 2.4.1.Affinity Laws -- 2.4.2.Pump Selection -- 2.4.2.1.Commercially available pumps -- 2.4.2.2.System characteristics -- 2.4.2.3.Limits on pump location -- 2.4.3.Multiple-Pump Systems -- 2.4.4.Variable-Speed Pumps -- Problems -- 3.Design of Water-Distribution Systems -- 3.1.Introduction -- 3.2.Water Demand -- 3.2.1.Per-Capita Forecast Mode1 -- 3.2.1.1.Estimation of per-capita demand -- 3.2.1.2.Estimation of population -- 3.2.2.Temporal Variations in Water Demand -- 3.2.3.Fire Demand -- 3.2.4.Design Flows -- 3.3.Components of Water-Distribution Systems -- 3.3.1.Pipelines -- 3.3.1.1.Minimum size -- 3.3.1.2.Service lines -- 3.3.1.3.Pipe materials -- 3.3.2.Pumps -- 3.3.3.Valves -- 3.3.4.Meters -- 3.3.5.Fire Hydrants -- 3.3.6.Water-Storage Reservoirs -- 3.4.Performance Criteria for Water-Distribution Systems -- 3.4.1.Service Pressures -- 3.4.2.Allowable Velocities -- 3.4.3.Water Quality -- 3.4.4.Network Analysis -- 3.5.Building Water-Supply Systems -- 3.5.1.Specification of Design Flows -- 3.5.2.Specification of Minimum Pressures -- 3.5.3.Determination of Pipe Diameters -- Problems -- 4.Fundamentals of Flow in Open Channels -- 4.1.Introduction -- 4.2.Basic Principles -- 4.2.1.Steady-State Continuity Equation -- 4.2.2.Steady-State Momentum Equation -- 4.2.2.1.Darcy-Weisbach equation -- 4.2.2.2.Manning equation -- 4.2.2.3.Other equations -- 4.2.2.4.Velocity distribution -- 4.2.3.Steady-State Energy Equation -- 4.2.3.1.Energy grade line -- 4.2.3.2.Specific energy -- 4.3.Water-Surface Profiles -- 4.3.1.Profile Equation -- 4.3.2.Classification of Water-Surface Profiles -- 4.3.3.Hydraulic Jump -- 4.3.4.Computation of Water-Surface Profiles -- 4.3.4.1.Direct-integration method -- 4.3.4.2.Direct-step method -- 4.3.4.3.Standard-step method -- 4.3.4.4.Practical considerations -- 4.3.4.5.Profiles across bridges -- Problems -- 5.Design of Drainage Channels -- 5.1.Introduction -- 5.2.Basic Principles -- 5.2.1.Best Hydraulic Section -- 5.2.2.Boundary Shear Stress -- 5.2.3.Cohesive versus Noncohesive Materials -- 5.2.4.Bends -- 5.2.5.Channel Slopes -- 5.2.6.Freeboard -- 5.3.Design of Channels with Rigid Linings -- 5.4.Design of Channels with Flexible Linings -- 5.4.1.General Design Procedure -- 5.4.2.Vegetative Linings and Bare Soil -- 5.4.3.RECP Linings -- 5.4.4.Riprap, Cobble, and Gravel Linings -- 5.4.5.Gabions -- 5.5.Composite Linings -- Problems -- 6.Design of Sanitary Sewers -- 6.1.Introduction -- 6.2.Quantity of Wastewater -- 6.2.1.Residential Sources -- 6.2.2.Nonresidential Sources -- 6.2.3.Inflow and Infiltration (I/I) -- 6.2.4.Peaking Factors -- 6.3.Hydraulics of Sewers -- 6.3.1.Manning Equation with Constant n -- 6.3.2.Manning Equation with Variable n -- 6.3.3.Self-Cleansing -- 6.3.4.Scour Prevention -- 6.3.5.Design Computations for Diameter and Slope -- 6.3.6.Hydraulics of Manholes -- 6.4.System Design Criteria -- 6.4.1.System Layout -- 6.4.2.Pipe Material -- 6.4.3.Depth of Sanitary Sewer -- 6.4.4.Diameter and Slope of Pipes -- 6.4.5.Hydraulic Criteria -- 6.4.6.Manholes -- 6.4.7.Pump Stations -- 6.4.8.Force Mains -- 6.4.9.Hydrogen-Sulfide Control -- 6.4.10.Combined Sewers -- 6.5.Design Computations -- 6.5.1.Design Aids -- 6.5.1.1.Manning's n -- 6.5.1.2.Minimum slope for self-cleansing -- 6.5.2.Procedure for System Design -- Problems -- 7.Design of Hydraulic Structures -- 7.1.Introduction -- 7.2.Culverts -- 7.2.1.Hydraulics -- 7.2.1.1.Submerged entrances -- 7.2.1.2.Unsubmerged entrances -- 7.2.2.Design Constraints -- 7.2.3.Sizing Calculations -- 7.2.3.1.Fixed-headwater method -- 7.2.3.2.Fixed-flow method -- 7.2.3.3.Minimum-performance method -- 7.2.4.Roadway Overtopping -- 7.2.5.Riprap/Outlet Protection -- 7.3.Gates -- 7.3.1.Free Discharge -- 7.3.2.Submerged Discharge -- 7.3.3.Empirical Equations -- 7.4.Weirs -- 7.4.1.Sharp-Crested Weirs -- 7.4.1.1.Rectangular weirs -- 7.4.1.2.V-notch weirs -- 7.4.1.3.Compound weirs -- 7.4.1.4.Other types of sharp-crested weirs -- 7.4.2.Broad-Crested Weirs -- 7.4.2.1.Rectangular weirs -- 7.4.2.2.Compound weirs -- 7.4.2.3.Gabion weirs -- 7.5.Spillways -- 7.5.1.Uncontrolled Spillways -- 7.5.2.Controlled (Gated) Spillways -- 7.5.2.1.Gates seated on the spillway crest -- 7.5.2.2.Gates seated downstream of the spillway crest -- 7.6.Stilling Basins -- 7.6.1.Type Selection -- 7.6.2.Design Procedure -- 7.7.Dams and Reservoirs -- 7.7.1.Types of Dams -- 7.7.2.Reservoir Storage -- 7.7.2.1.Sediment accumulation -- 7.7.2.2.Determination of storage requirements -- 7.7.3.Hydropower -- 7.7.3.1.Turbines -- 7.7.3.2.Turbine performance -- 7.7.3.3.Feasibility of hydropower -- Problems -- 8.Probability and Statistics in Water-Resources Engineering -- 8.1.Introduction -- 8.2.Probability Distributions -- 8.2.1.Discrete Probability Distributions -- 8.2.2.Continuous Probability Distributions -- 8.2.3.Mathematical Expectation and Moments -- 8.2.4.Return Period -- 8.2.5.Common Probability Functions -- 8.2.5.1.Binomial distribution -- 8.2.5.2.Geometric distribution -- 8.2.5.3.Poisson distribution -- 8.2.5.4.Exponential distribution -- 8.2.5.5.Gamma/Pearson Type III distribution -- 8.2.5.6.Normal distribution -- 8.2.5.7.Log-normal distribution -- 8.2.5.8.Uniform distribution -- 8.2.5.9.Extreme-value distributions -- 8.2.5.10.Chi-square distribution -- 8.3.Analysis of Hydrologic Data -- 8.3.1.Estimation of Population Distribution -- 8.3.1.1.Probability distribution of observed data -- 8.3.1.2.Hypothesis tests -- 8.3.1.3.Model selection criteria -- 8.3.2.Estimation of Population Parameters -- 8.3.2.1.Method of moments -- 8.3.2.2.Maximum-likelihood method -- 8.3.2.3.Method of L-moments -- 8.3.3.Frequency Analysis -- 8.3.3.1.Normal distribution -- 8.3.3.2.Log-normal distribution -- 8.3.3.3.Gamma/Pearson Type III distribution -- 8.3.3.4.Log-Pearson Type III distribution -- 8.3.3.5.Extreme-value Type I distribution -- 8.3.3.6.General extreme-value (GEV) distribution -- 8.4.Uncertainty Analysis -- Problems -- 9.Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions -- 9.1.Introduction -- 9.2.Rainfall -- 9.2.1.Measurement of Rainfall -- 9.2.2.Statistics of Rainfall Data -- 9.2.2.1.Rainfall statistics in the United States -- 9.2.2.2.Secondary estimation of IDF curves -- 9.2.3.Spatial Averaging and Interpolation of Rainfall -- 9.2.4.Design Rainfall -- 9.2.4.1.Return period -- 9.2.4.2.Rainfall duration -- 9.2.4.3.Rainfall depth -- 9.2.4.4.Temporal distribution -- 9.2.4.5.Spatial distribution -- 9.2.5.Extreme Rainfall -- 9.2.5.1.Rational estimation method -- 9.2.5.2.Statistical estimation method -- 9.2.5.3.World-record precipitation amounts -- 9.2.5.4.Probable maximum storm -- 9.3.Rainfall Abstractions -- 9.3.1.Interception -- 9.3.2.Depression Storage -- 9.3.3.Infiltration -- 9.3.3.1.The infiltration process -- 9.3.3.2.Horton model -- 9.3.3.3.Green-Ampt model -- 9.3.3.4.NRCS curve-number model -- 9.3.3.5.Comparison of infiltration models -- 9.3.4.Rainfall Excess on Composite Areas -- 9.4.Baseflow -- Problems -- 10.Fundamentals of Surface-Water Hydrology II: Runoff -- 10.1.Introduction -- 10.2.Mechanisms of Surface Runoff -- 10.3.Time of Concentration -- 10.3.1.Overland Flow -- 10.3.1.1.Kinematic-wave equation -- 10.3.1.2.NRCS method -- 10.3.1.3.Kirpich equation -- 10.3.1.4.Izzard equation -- 10.3.1.5.Kerby equation -- 10.3.2.Channel Flow -- 10.3.3.Accuracy of Estimates -- 10.4.Peak-Runoff Models -- 10.4.1.The Rational Method -- 10.4.2.NRCS-TR55 Method -- 10.5.Continuous-Runoff Models -- 10.5.1.Unit-Hydrograph Theory -- 10.5.2.Instantaneous Unit Hydrograph -- 10.5.3.Unit-Hydrograph Models -- 10.5.3.1.Snyder unit-hydrograph model -- 10.5.3.2.NRCS dimensionless unit hydrograph -- 10.5.3.3.Accuracy of unit-hydrograph models -- 10.5.4.Time-Area Models -- 10.5.5.Kinematic-Wave Model -- 10.5.6.Nonlinear-Reservoir Model -- 10.5.7.Santa Barbara Urban Hydrograph Model -- 10.5.8.Extreme Runoff Events -- 10.6.Routing Models -- 10.6.1.Hydrologic Routing -- 10.6.1.1.Modified PuIs method -- 10.6.1.2.Muskingum method -- 10.6.2.Hydraulic Routing -- 10.7.Water-Quality Models -- 10.7.1.Event-Mean Concentrations -- 10.7.2.Regression Equations -- 10.7.2.1.USGS model -- 10.7.2.2.EPA model -- Problems -- 11.Design of Stormwater-Collection Systems -- 11.1.Introduction -- 11.2.Street Gutters -- 11.3.Inlets -- 11.3.1.Curb Inlets -- 11.3.2.Grate Inlets -- 11.3.3.Combination Inlets -- 11.3.4.Slotted Inlets -- 11.4.Roadside and Median Channels -- 11.5.Storm Sewers -- 11.5.1.Calculation of Design Flow Rates -- 11.5.2.Pipe Sizing and Selection -- 11.5.3.Manholes -- 11.5.4.Determination of Impervious Area -- 11.5.5.System-Design Computations -- 11.5.6.Other Design Considerations -- Problems -- 12.Design of Stormwater-Management Systems -- 12.1.Introduction -- 12.2.Performance Goals -- 12.2.1.Quantity Control -- 12.2.2.Quality Control -- 12.3.Design of Stormwater Control Measures -- 12.3.1.Storage Impoundments -- 12.3.1.1.Detention basins -- Design parameters -- 12.3.1.2.Wet detention basins -- 12.3.1.3.Dry detention basins -- 12.3.1.4.Design of outlet structures -- 12.3.1.5.Design for flood control -- 12.3.2.Infiltration Basins -- 12.3.3.Swales -- 12.3.3.1.Retention swales -- 12.3.3.2.Biofiltration swa…”
Published 2013
Book -
120